簡易檢索 / 詳目顯示

研究生: 陳文晧
Chen, Wen-Hao
論文名稱: 太空電漿實驗腔中電子分布函數之量測
Measurement of Electron Distribution Function in Space Plasma Operation Chamber
指導教授: 陳秋榮
Cheng, Chio-Zong
共同指導教授: 小山孝一郎
Oyama, Koh-ichiro
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 90
中文關鍵詞: 蘭摩爾探針電子分布函數
外文關鍵詞: Langmuir probe, electron distribution function, finite satellite/probe surface area ratio
相關次數: 點閱:202下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蘭摩爾探針(Langmuir probe)是一種被廣泛使用於量測電離層中的電子溫度及密度的儀器,而電子分布函數的量測是蘭摩爾探針一項重要的應用。一般用於量測電子分布函數的蘭摩爾探針系統的量測動態範圍大約為2至3個數量級,這樣的量測範圍並不夠讓我們得到足夠的電子分布函數的資訊。另外,當蘭摩爾探針在小衛星上進行量測時,它會受到有限的衛星及探針表面積比的效應的影響,並造成量測的結果不正確。因此本篇論文的目的是發展一個具有較大的量測動態範圍以及訊號與雜訊比之儀器來量測電子分布函數,且這個儀器可以避免有限的衛星及探針表面積比的效應所造成的影響。在本篇論文中將會提到這套儀器的設計原理及電路架構,並討論此儀器與蘭摩爾探針的差異,以及在實驗中的測試結果。另外,我們也藉由實驗研究了蘭摩爾探針在有限衛星及探針表面積比的效應,這些效應影響了蘭摩爾探針的量測結果,是蘭摩爾探針在衛星上進行量測時不可忽視的問題。

    Langmuir probe is a commonly used instrument for measuring the electron density and temperature in the ionosphere. The measurement of electron distribution function (EDF) is also an important application of the Langmuir probe measurement. The typical EDF dynamic range of the Langmuir probe measurement is about 2~3 orders of magnitude, which is too small to measure EDF in wide energy range due to the small signal-to-noise (S/N) ratio. In addition, the Langmuir probe measurement on small satellites suffers the effect of finite satellite/probe surface area ratio, which causes inaccurate measurement results. Hence, the goal of this thesis is to develop a new system to measure EDF with large dynamic range and large S/N ratio, and the new device can theoretically avoid the effects of finite satellite/probe surface area ratio on the EDF measurement on small satellites. We will describe the Langmuir probe system design and electronic circuits, the development of a new device for measuring EDF using the channel electron multiplier, and experimental results obtained in Space Plasma Operation Chamber of the Plasma and Space Science Center at National Cheng Kung University. We also investigate the effect of finite satellite/probe surface area ratio on the Langmuir probe measurement, which needs to be considered when the Langmuir probe is deployed onboard small satellites.

    Abstract .......... I 摘要 .......... II 誌謝 .......... III List of tables .......... VII List of figures .......... VIII Chapter 1 Introduction .......... 1 1.1 Purpose of this thesis .......... 1 1.2 Ionosphere .......... 2 Chapter 2 Langmuir Probe Theory .......... 6 2.1 Principle of Langmuir probe measurement .......... 6 2.2 Electron distribution function .......... 8 2.3 Maxwellian distribution function .......... 10 2.3.1 Probe current in electron repellent region .......... 10 2.4 An electronic method for measuring the second derivative of probe current ........... 12 Chapter 3 Design of the systems for measuring the electron distribution function .......... 14 3.1 Estimation of the probe current .......... 14 3.2 Langmuir probe system for measuring I-V characteristic curve .......... 16 3.2.1 Pre-amplifier .......... 17 3.2.2 Second-stage system .......... 20 3.3 Langmuir probe system for measuring electron distribution function .......... 22 3.3.1 Determination of the frequency of the superposed sinusoidal wave .......... 22 3.3.2 Function of each part in the circuit .......... 25 3.3.3 Lock-in amplifier .......... 29 3.3.4 Space Plasma Operation Chamber .......... 36 3.3.5 An EDF example measured by the Langmuir probe system .......... 39 Chapter 4 Effects of finite satellite/probe surface area ratio on Langmuir probe measurement .......... 41 4.1 Introduction of small satellites .......... 41 4.2 Effects of finite satellite/probe surface area ratio on Langmuir probe measurement .......... 42 4.2.1 Calculation of the probe and satellite current .......... 42 4.2.2 Probe and satellite potential variations when Asat/Apr is finite .......... 44 4.2.3 I-V characteristics .......... 46 4.2.4 Actual Langmuir probe I-V characteristics measurement .......... 47 4.3 Experimental setup .......... 48 4.3.1 Satellite simulation device ........... 49 4.3.2 Setup for the measurement .......... 50 4.4 Experimental results .......... 51 4.4.1 Comparison of the probe and satellite potential in different satellite/probe surface area ratios .......... 51 4.4.2 Comparison of I-V characteristic curves in different satellite/probe surface area ratios .......... 52 4.4.3 Measured second derivative of current when Asat/Apr is finite .......... 53 Chapter 5 System for measuring high energy electrons .......... 55 5.1 Sensor and energy selection system .......... 55 5.2 Principle of electron energy selection .......... 59 5.3 System diagram .......... 60 5.3.1 Isolation amplifier .......... 62 5.3.2 Data rate .......... 63 5.4 An example of CEM operation for measuring the high energy electrons ............ 64 5.5 Effects of the contamination of the meshes .......... 67 Chapter 6 Experiments in Space Plasma Operation Chamber .......... 70 6.1 Determination of the plasma potential .......... 70 6.2 Measurement of electron distribution in SPOC by probe .......... 71 6.2.1 Experimental setup .......... 71 6.2.2 Experimental results .......... 73 6.3 Measurement of electron distribution function by CEM .......... 75 6.3.1 Experimental setup .......... 75 6.3.2 Experimental results .......... 76 Chapter 7 Conclusion and future work .......... 80 References .......... 82 Appendix .......... 85

    Ashihara, O., Takayanagi, K. (1973),”Velocity distribution of ionospheric low-energy electrons”, Planet. Space Sci., 22, 1201-1217.

    Amemiya, H., K. Oyama, K. Hirao (1985),”Observation of the energy distribution of thermal electrons in the ionosphere”, Planet. Space Sci., 33, 8, 875-890.

    Allen, J. E. (1992),”Probe theory – the orbital motion approach”, Phys. Scr. 45 497

    Boyd, R. L. F., Twiddy, N. D. (1958),”Electron energy distributions in plasmas. I”, Proc. R. Soc., A250, 53-69.

    Breig, E. L., Brennan, M.E., McNeal, R. J. (1973),”Effect of Atomic Oxygen on the N2 Vibrational Temperature in the Lower Thermosphere” J. Geophys. Res., 78, 4, 2156-2202.

    Cowley, B., Dietrich, S. (2009),” A Langmuir probe system incorporating the Boyd–Twiddy method for EEDF measurement applied to an inductively coupled plasma source”, Plasma Sources Sci. Technol. 18, 014010.

    Dryvesteyn, M. J. (1930), “Der Niedervolt Bogen”, Z. Physik, 64, 781-798.
    Esmail Jamshidi, Edward R. Fisher, Ralph H. Kummler (1973),” Vibrational temperature of N2 in the E and F regions”, J. Geophys. Res., 78, 27, 6151-6166.

    Fang, H. K. K.-I. Oyama, and C. Z. Cheng (2014),”Electrode contamination effects of retarding potential analyzer”, Rev. Sci. Instrum. 85, 015104

    Hirao, Kunio, Oyama, Koh-ichiro (1971),”Measurement of the Space Potential in Plasma”, J. Geomagnet. Geoelec. 23: No. 1, 47-60

    Harris, R. D., Adams, G.W. (1983),”Where Does The O(1D) Energy Go?” J. Geophys. Res.Reseach, 88, A6, 4918-4928.

    Itikawa, Y., Hayashi, m., Ichimura, A., Onda, K., Sakimoto, K., Takayanagi, K. (1986), J. Phys. Chem. Ref. Data, 15, 3.

    Itikawa, Y. (2006),”Cross Sections for Electron Collisions with Nitrogen Molecules”, J. Phys. Chem. Ref. Data, 35, 1.

    Itikawa, Y. (2009),”Cross Sections for Electron Collisions with Oxygen Molecules” J. Phys. Chem. Ref. Data, 38, 1.

    James C. G. Walker (1968),”Electron and nitrogen vibrational temperature in the E-region of the ionosphere ”, Planet. Space Sci., 16, 3, 321-327.

    Jasperse, J. R. (1976),”Electron distribution function and ion concentrations in the Earth’s lower ionosphere from Boltzmann-Fokker-Planck theory”, Planet. Space Sci., 25, 743-756.

    Langmuir, I. and H. M. Mott-Smith, Jr. (1924),”Studies of electric discharges in gas at low pressure ”, Gen. Elec. Rev., 616.

    Mausbach, Michael (1997),”Parameterization of the Laframboise theory for cylindrical Langmuir probe analysis”, J. Vac. Sci. Technol. A, 15, 2923

    Oyama, K.-I. (1975) Characterestic of the contaminated Langmuir probe and countermoves for its application to the space observations, Ph.D. thesis, ISAS Report No. 525.

    Oyama, Koh-ichiro, Hirao, Kunio (1976),”Inaccuracies in electron density estimates due to surface contamination of Langmuir probes” Planet Space Sci., 24, 87-89.

    Oyama, Koh-ichiro, Hirao, Kunio (1985),”Energy Gain of Supra-thermal Electrons from the Excited Neutral Gases” J. Geomag. Geoelectr., 37, 913-926.

    Oyama, K.-I., M. Shimoyama, J. Y. Liu, and C. Z. Cheng (2011),”Possible interaction between thermal electrons and vibrationally excited N2 in the lower E-region” Ann. Geophys., 29, 583-590.

    Oyama, K.-I., C. H. Lee, H. K. Fang, C. Z. Cheng (2012),”Means to remove electrode contamination effect of Langmuir probe measurement in space”, Rev. Sci. Instrmu. 83, 055113.

    Robert L. Merlino (2007) American Journal of Physics, 75, 1078.

    Shimoyama. M, Oyama, K.-I., Abe, T., Yau, A. W. (2011),”Effect of finite electrode area ratio on high-frequency Langmuir probe measurements” Rev. Sci. Instrmu. 82, 074501.

    Shimoyama. M, Oyama, K.-I., Abe, T., Yau, A. W. (2012),”Suprathermal plasma analyzer for the measurement of low-energy electron distribution in the ionosphere”, J. Phys. D: Appl. Phys., 45, 075205.

    Klenzing, J. H., Earle, G. D., Heelis, R. A. (2008),” Errors in ram velocity and temperature measurements inferred from satellite-borne retarding potential analyzers”, Physics of Plasmas(1994-present), 15, 062905.

    Klenzing, J. H., Earle, G. D., Heelis, R. A., Coley, W. R. (2009),”A statistical analysis of systematic errors in temperature and ram velocity estimates from satellite-borne retarding potential analyzers” Physics of Plasmas(1994-present), 16, 052901

    下載圖示 校內:立即公開
    校外:2015-08-18公開
    QR CODE