| 研究生: |
吳承翰 Wu, Cheng-Han |
|---|---|
| 論文名稱: |
以水熱法製備氧化鋅類單晶薄膜及其於光電元件之應用研究 Hydrothermal Growth of Quasi-monocrystalline ZnO Film and Its Applications on Optoelectronic Devices |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 氧化鋅 、水熱法 、異質結構 、發光二極體 、紫外光檢測器 |
| 外文關鍵詞: | ZnO, hydrothermal growth, heterojunction structure, light emitting diode, UV photodetector |
| 相關次數: | 點閱:109 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在藉由水熱法(hydrothermal growth, HTG)進行類單晶之氧化鋅(ZnO)薄膜選擇性成長,以ZnO薄膜為基材搭配其它p型半導體材料(例如:p型氮化鎵(p-GaN)、p型氧化鎳(p-NiO)),進而製備異質接面結構之發光二極體以及紫外光檢測器。本研究所採用HTG技術具製程環境低溫低壓、成長時間短與元件製作成本低廉等優點,相較於其他ZnO奈米結構所製備之異質接面結構二極體,本研究之ZnO薄膜結構具備較大接面面積,與較高之機械應力,亦可避免ZnO接面製作時,若未先以絕緣材料填塞於ZnO奈米結構之間,極易發生上下電極或p型材料短路之缺點。
本論文之研究工作概分為三部份,第一部分為利用水熱法製程,於p-GaN磊晶表面以及已濺鍍ZnO晶種層之藍寶石基板表面,分別進行ZnO薄膜之成長,並藉由X-光繞射(XRD)、穿隧式電子顯微鏡(TEM)、可見光穿透率量測儀及霍爾量測機台進行分析,證實本研究所製備之ZnO薄膜具有高結晶性、高穿透率、高載子移動率及低電阻率之特性。
第二部分集中於p-GaN磊晶層上成長ZnO薄膜及其元件應用之研究工作。經分別沉積p型及n型歐姆接觸金屬電極於p-GaN薄膜與所成長之n-ZnO薄膜,完成n-ZnO/p-GaN異質接面結構二極體之製備並進行發光二極體以及紫外光檢測器之光電特性量測分析與探討。由實驗結果顯示,於發光二極體之特性上,電致發光之光譜圖於393 nm與410 nm有明顯峰值,整體發光強度與注入電流大小成正相關;於紫外光檢測器之特性上,紫外光(波長:365 nm,光強度:3 mW/cm2)照射下有447倍 (JUV/Jdark)之光響應,響應時間與回復時間分別為7秒及1秒。
第三部分研究工作集中於藍寶石基板上成長ZnO薄膜以及其與p-NiO濺鍍薄膜之元件應用研究。於所成長ZnO薄膜上濺鍍沉積一層不同厚度之p-NiO薄膜後,沉積p型及n型歐姆接觸金屬電極,進行n-ZnO/p-NiO異質接面結構二極體之製備並進行紫外光檢測器之光電特性量測及數據分析。實驗結果顯示,此元件於p-NiO薄膜厚度為600 nm展現出高整流比之電流特性。於紫外光(波長:365 nm,光強度:3 mW/cm2)照射下有695倍(JUV/Jdark)之響應,響應時間與回復時間分別為57秒及13秒。
本研究以水熱法製備出具有高結晶性及高穿透率之ZnO薄膜,並分別與p-GaN與p-NiO成功製備異質結構光電元件,具優異光電特性及高響應能力,極具應用潛力,預期於本研究所提出有關水熱法成長之高結晶性ZnO薄膜及其於光電元件之應用將可對光電產業提供助益。
In this study, quasi-monocrystalline ZnO film was fabricated by hydrothermal growth (HTG) method, and its applications on light emitting diodes (LEDs) and ultraviolet photodetectors (UV-PDs) with n-ZnO/p-GaN and n-ZnO/p-NiO heterojunctions (HJs) were demonstrated. Strong UV-blue emission from the n-ZnO/p-GaN HJ-LED with a dominant peak at 393 nm and a small sub-peak at 410 nm without defect-related emissions in the visible region were observed from electroluminescence (EL) spectra. The measured current density-voltage (J-V) curves in darkness shows that UV-PDs with n-ZnO/p-GaN and n-ZnO/p-NiO HJs have rectifying current-voltage characteristics. The UV-PDs of n-ZnO/p-GaN HJ and n-ZnO/p-NiO HJ possessed superior UV light (3 mW/cm2 at 365 nm) sensitivity of 447-fold and 695-fold, and weaker visible light sensitivity of 1.8-fold and 11-fold, respectively.
[1] D. Wang, F. Wang, Y. Wang, Y. Fan, B. Zhao, and D. Zhao, “Interfacial Emission Adjustment in ZnO Quantum Dots/p-GaN Heterojunction Light-Emitting Diodes,” The Journal of Physical Chemistry C, vol. 119, pp. 2798-2803, 2015.
[2] S. Pearton, D. Norton, K. Ip, Y. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Progress in Materials Science, vol. 50, pp. 293-340, 2005.
[3] P. Villars, “Peardon’s Handbook of Crystallographic Data,” American Society for Metals, vol. 1, pp. 4787-4795, 1997.
[4] Y. C. Tu, S. J. Wang, G. Y. Lin, T. H. Lin, C. H. Hung, and F. S. Tsai, “Enhanced light output of vertical GaN-based LEDs with surface roughened by refractive-index-matched Si3N4/GaN nanowire arrays,” Applied Physics Express, vol. 7, pp. 042101-1-0402101-2, 2014.
[5] D. C. Look, D. C. Reynolds, J. Sizelove, R. Jones, C. W. Litton, and G. Cantwell, “Electrical properties of bulk ZnO,” Solid State Communications, vol. 105, pp. 399-401, 1998.
[6] A. Anwar, S. Wu, and R. T. Webster, “Temperature dependent transport properties in GaN, Alx Ga1-x N, and In x Ga1-x N semiconductors,” IEEE Transactions on Electron Devices, vol. 48, pp. 567-572, 2001.
[7] Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors,” Applied Physics Letters, vol. 85, pp. 3689-3691, 2004.
[8] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Applied Physics Letters, vol. 5, pp. 89-1-89-3, 1964.
[9] Y. Wu, and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” Journal of the American Chemical Society, vol. 123, pp. 3165-3166, 2001.
[10] D. B. Buchholz, R. P. H. Chang, J. H. Song, and J. B. Ketterson, “Room-temperature ferromagnetism in Cu-doped ZnO thin films,” Applied Physics Letters, vol. 87, pp.082504-1-082504-3, 2005.
[11] D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, and S. J. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Applied Physics Letters, vol. 86, pp. 151917-1-151917-3, 2005.
[12] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Applied Physics Letters, vol. 81, pp. 1830-1832, 2002.
[13] Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, “Synthesis of p-type ZnO films,” Journal of Crystal Growth, vol. 216, pp. 330-334, 2000.
[14] M. Wardle, J. Goss, and P. Briddon, “Theory of Li in ZnO: A limitation for Li-based p-type doping,” Physical Review B, vol. 71, pp. 155205-1-155205-10, 2005.
[15] F. Xiu, Z. Yang, L. Mandalapu, D. Zhao, J. Liu, and W. Beyermann, “High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy,” Applied Physics Letters, vol. 87, pp. 152101-1-152101-3, 2005.
[16] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, and M. Sumiya, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nature Materials, vol. 4, pp. 42-46, 2004.
[17] K. J. Kima, and Y. R. Park, “Large and abrupt optical band gap variation in In-doped ZnO,” Applied Physics Letters, vol. 78, pp. 475-477, 2000.
[18] M. K. Lee, H. Yen, and N. R. Cheng, “Efficiency Enhancement of DSSC With Aqueous Solution Deposited ZnO Nanotip Array,” Photonics Technology Letters, vol. 26, pp. 454-456, 2014.
[19] F. S. Tsai and S. J. Wang, “Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets,” Sensors and Actuators B: Chemical, vol. 193, pp. 280-287, 2014.
[20] Y. C. Huang, F. S. Tsai, and S. J. Wang, “Preparation of TiO2 nanowire arrays through hydrothermal growth method and their pH sensing characteristics,” Japanese Journal of Applied Physics, vol. 53, pp. 06JG02-1-06JG02-5, 2014.
[21] Y. Caglar, M. Caglar, S. Ilican, S. Aksoy, and F. Yakuphanoglu, “Effect of channel thickness on the field effect mobility of ZnO-TFT fabricated by sol gel process,” Journal of Alloys and Compounds, vol. 621, pp. 189-193, 2015.
[22] Klaus Wilhelm, “Past and recent observations of the solar upper atmosphere at vacuum-ultraviolet wavelengths,” Atmospheric and Solar-Terrestrial Physics, vol. 65, pp. 167-189, 2003.
[23] M. M. Yusoff, A. Mahyuddin, Z. Hassan, H. A. Hassan, M. Abdullah, M. Rusop, “AlN/GaN/AlN heterostructures grown on Si substrate by plasma-assisted MBE for MSM UV photodetector applications,” Materials Science in Semiconductor Processing, vol. 29, pp. 231-237, 2015.
[24] Y. Xie, L. Wei, Q. Li, Y. Chen, S. Yan, and J. Jiao, “High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays,” Nanotechnology, vol. 25, pp. 075202-1-075202-7, 2014.
[25] H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, and H. Hosono, “UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO,” Thin Solid Films, vol. 445, pp. 317-321, 2003.
[26] K. Wang, Y. Vygranenko, and A. Nathan, “ZnO-based p-i-n and n-i-p heterostructure ultraviolet sensors: a comparative study,” Journal of applied physics, vol. 101, pp. 114508-1-114508-5, 2007.
[27] L. Li, Y. Ryu, H. W. White, and P. Yu, “Characterization of ZnO UV photoconductors on the 6H-SiC substrate,” International Society for Optics and Photonics, vol. 7603, pp. 76031O-1-76031O-8, 2010.
[28] H. Endo, M. Sugibuchi, K. Takahashi, S. Goto, K. Hane, and Y. Kashiwaba, “Schottky ultraviolet photodiode using a ZnO hydrothermally grown single crystal substrate,” Applied Physics Letters, vol. 90, pp. 121906-1-121906-3, 2007.
[29] M. Li, N. Chokshi, R. L. DeLeon, G. Tompa, and W. A. Anderson, “Radio frequency sputtered zinc oxide thin films with application to metal–semiconductor–metal photodetectors,” Thin Solid Films, vol. 515, pp. 7357-7363, 2007.
[30] K. Lee, K. T. Kim, J. M. Choi, M. S. Oh, D. K. Hwang, S. Jang, E. Kim and S. Im, “Improved dynamic properties of ZnO-based photo-transistor with polymer gate dielectric by ultraviolet treatment,” Journal of Physics D: Applied Physics, vol. 41, pp. 1-5, 2008.
[31] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature.” Applied Physics Letters, vol. 70, pp. 2230-2232, 1997.
[32] Y. Yamada, T. Sakashita, H. Watanabe, H. Kugimiya, S. Nakamura and T. Taguchi, “Optical properties of biexcitons in ZnS,” Physical Review B, vol. 61,pp 8363-8368. 2000.
[33] D. K. Hwang, J. H. Lim, M. S. Oh, and S. J. Park, “ZnO thin films and light-emitting diodes,” Journal of Physics D: Applied Physics, vol. 40, pp. R387-R412, 2007.
[34] T. Guo, Y. Luo, Y. Zhang, Y.-H. Lin, and C.-W. Nan, “Controllable growth of ZnO nanorod arrays on NiO nanowires and their high UV photoresponse current,” Crystal Growth & Design, vol. 14, pp. 2329-2334, 2014.
[35] W. Dai, X. Pan, S. Chen, C. Chen, Z. Wen, H. Zhang, “Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance,” Journal of Materials Chemistry C, vol. 2, pp. 4606-4614, 2014.
[36] A. El-Shaer, A. Che Mofor, A. Bakin, M. Kreye, A. Waag, “High-quality ZnO layers grown by MBE on sapphire,” Superlattices and Microstructures, vol. 38, pp.265-271, 2005.
[37] E. M. Kaidashev, M. Lorenz, H. von Wenckstern, and A. Rahm, “High electron mobility of epitaxial ZnO thin films on c -plane sapphire grown by multistep pulsed-laser deposition,” Applied Physics Letters, vol. 82, pp. 3901-3903, 2003.
[38] Baosheng Sang, Yoshinori Nagoya, Katsumi Kushiya, and Osamu Yamase, “MOCVD-ZnO windows for 30 cm30 cm CIGS-based modules,” Solar Energy Materials & Solar Cells, vol. 75, pp. 179-184, 2003.
[39] Baosheng SANG, Akira YAMADA, and Makoto KONAGAI, “Highly Stable ZnO Thin Films by Atomic Layer Deposition,” Japanese Journal of Applied Physics, vol. 37, pp. 1125-1128, 1998.
[40] T. E. Cook, C. C. Fulton, W. J. Mecouch, K. M. Tracy, R. F. Davis, and E. H. Hurt, “Measurement of the band offsets of SiO2 on clean n- and p-type GaN(0001),” Journal of Applied Physics, vol. 93, pp. 3995-4004, 2003.
[41] M. Nawaz, E. Marstein, and A. Holt, “Design analysis of ZnO/cSi heterojunction solar cell,” Photovoltaic Specialists Conference, vol. 35, pp. 002213-002218, 2010.
[42] Z. Sun, Y. Zhao, M. He, L. Gu, C. Ma, and K. Jin, “Deterministic Role of Concentration Surplus of Cation Vacancy Over Anion Vacancy in Bipolar Memristive NiO,” ACS Applied Materials & Interfaces, vol. 8, pp. 11583-11591, 2016.
[43] Jing Li, Suntao Wu, and Junyong Kang, “ZnO Films Deposited by RF Magnetron Sputtering,” Semiconducting and Insulating Materials, vol. 13, pp.77-80, 2009.
[44] Y. Y. Xi, Y. F. Hsu, A.B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution based growth,” Applied Physics Letters, vol. 92, pp. 113505-1-113505-3, 2008.
[45] Y. X. Zhang, G. H. Li , Y. X. Jin, Y. Zhang, J. Zhang, L.D. Zhang, “Hydrothermal synthesis and photoluminescence of TiO2 nanowires,” Chemical Physics Letters, vol. 365, pp. 300-304, 2002.
[46] S. Li, H. Zhang, Y. Ji, and D. Yang, “CuO nanodendrites synthesized by a novel hydrothermal route,” Nanotechnology, vol. 15, pp. 1428-1432, 2004.
[47] L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids,” Journal of the American Chemical Society, vol. 113, pp. 2826-2833, 1991.
[48] L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” The Journal of Physical Chemistry B, vol. 105, pp. 3350-3352, 2001.
[49] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO form aqueous solution,” Advanced Materials, vol. 15, pp. 464-466, 2003.
[50] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, and M. J. Mcdermott, “Biomimetic arrays of oriented helical ZnO nanorods and columns,” Journal of the American Chemical Society, vol. 124, p. 12954-12955, 2002.
[51] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angewandte Chemie, vol. 115, pp. 3139-3142, 2003.
[52] K. Govender, David S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution,” Journal of Materials Chemistry, vol. 14, pp. 2575-2591, 2004.
[53] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solution,” Chemistry of Materials, vol. 17, pp. 1001-1006, 2005.
[54] P. Y. Yang, J. L. Wang, W. C. Tsai, S. J. Wang, J. C. Lin, and I. C. Lee, “Effect of Oxygen Annealing on the Ultraviolet Photoresponse of p-NiO-Nanoflower/n-ZnO-Nanowire Heterostructures, ” Journal of Nanoscience and Nanotechnology, vol. 11, pp. 5737-5743, 2011.
[55] M. A. Abbasi, Z. H. Ibupoto, A. Khan, O. Nur, and M. Willander, “Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures,” Materials Letters, vol. 108, pp. 149-152, 2013.
[56] X. Zhang, K. S. Hui, and K. Hui, “High photo-responsivity ZnO UV detectors fabricated by RF reactive sputtering,” Materials Research Bulletin, vol. 48, pp. 305-309, 2013.
[57] S. Inamdar and K. Rajpure, “High-performance metal–semiconductor–metal UV photodetector based on spray deposited ZnO thin films,” Journal of Alloys and Compounds, vol. 595, pp. 55-59, 2014.
[58] L. Zhang, F. Zhao, C. Wang, F. Wang, R. Huang, and Q. Li, “Optoelectronic characteristics of UV photodetector based on GaN/ZnO nanorods pin heterostructures.” Electronic Materials Letters, vol. 11, pp. 682-686, 2015.
[59] H. Abdulgafour, Z. Hassan, F. Yam, and C. Chin, “Sensing devices based on ZnO hexagonal tube-like nanostructures grown on p-GaN heterojunction by wet thermal evaporation,” Thin Solid Films, vol. 540, pp. 212-220, 2013.
[60] C. H. Chen, S. J. Chang, S. P. Chang, M. J. Li, I. C. Chen, T. J. Hsueh, and C. L. Hsu, “Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes,” Applied Physics Letters, vol. 95, pp. 223101-1- 223101-3, 2009.
[61] Y.G. Chen, M. Ogura, S. Yamasaki, and H. Okushi, “Investigation of specific contact resistance of ohmic contacts to B-doped homoepitaxial diamond using transmission line model,” Diamond & Related Materials, vol. 13, p. 2121-2124, 2004.
[62] D. J. Rogers, F. H. Teherani, A. Yasan, K. Minder, P. Kung, and M. Razeghi, “Electroluminescence at 375 nm from a ZnO/GaN:Mg/c-Al2O3 heterojunction light emitting diode,” Applied Physics Letters, vol. 88, pp. 141918-1-141918-3, 2006.
[63] C. Wu, D. Wuu, T. Chen, T. Yu, P. Lin, and R. Horng, “Characteristics of ZnO Nanowall Structures Grown on GaN Template Using Organometallic Chemical Vapor Deposition,” Journal of nanoscience and nanotechnology, vol. 8, pp. 3851-3856, 2008.
[64] J. H. Kim, E. M. Kim, D. Andeen, D. Thomson, S. P. DenBaars, F. F. Lang, “Growth of heteroepitaxial ZnO thin films on GaN-bufferd Al2O3 (0001) substrates by low temperature hydrothermal synthesis at 90 oC,” Advanced Functional Materials, vol. 17, pp. 463-471, 2007.
[65] K. Govender, David S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution,” Journal of Materials Chemistry, vol. 14, pp. 2575-2591, 2004.
[66] R. W. Nosker and P. Mark, “Polar surfaces of wurtzite and zincblende lattices,” Surface Science, vol. 19, pp. 291-317, 1970.
[67] J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” physica status solidi (b), vol. 15, pp. 627-637, 1966.
[68] Cross, R. B. M., M. M. De Souza, and EM Sankara Narayanan, “A low temperature combination method for the production of ZnO nanowires,” Nanotechnology, vol. 16, pp. 2188-2192, 2005.
[69] H. Qiao, Z. Wei, H. Yang, L. Zhu, and X. Yan, “Preparation and Characterization of NiO Nanoparticles by Anodic Arc Plasma Method,” Journal of Nanomaterials, vol. 2009, pp. 795928-1-795928-5, 2009.
[70] C. H. Cheng, A. J. Tzou, J. H. Chang, Y. C. Chi, Y. H. Lin, M. H. Shih, and G. R. Lin, “Growing GaN LEDs on amorphous SiC buffer with variable C/Si compositions,” Scientific reports, vol. 6, pp. 19757-1-19757-12, 2016.
校內:2021-07-01公開