簡易檢索 / 詳目顯示

研究生: 許瑜珊
Hsu, Yu-Shan
論文名稱: 以啟發式演算法求解整合補貨和取貨商家間易腐商品車輛庫存路徑問題
A Heuristic Algorithm for Pickups and Deliveries of Inventory Routing Problem among Stores with Perishable Products
指導教授: 張秀雲
Chang, Shiow-Yun
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 61
中文關鍵詞: 易腐性商品庫存路徑補貨和取貨問題多種商品配送問題
外文關鍵詞: Perishable products, Inventory routing, Pickup and delivery problem, Multiple product delivery problem
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在外食人口越來越多的時代,超商據點多且便利性高,使得越來越多人依靠超商提供的新鮮食品。但也因所提供之眾多種類屬於易腐性食用商品,若沒在一定時間內販售出去就會損壞,可能產生大量損失成本及浪費,使社會觀感不佳。超商主要由總公司物流中心運送商品,運送量的多寡因為商品具有易腐性質,及考量每間商家所販賣的商品數量不固定,所配送的數量也有所不同。庫存若是存放過多,可能因未販售而導致銷毀造成損失成本,若是存放過少,則可能損失能夠銷售的利益,然而公司因銷售競爭策略,寧可配送大量商品增加可能的銷售量,導致商品有高機率庫存滯留。為了降低損壞商品的數量,在不變動公司策略的情況下,考量在車輛配送過程中調動其商品數量,並藉由配送模式,提高配送中商品的流動,且穩定預期可販售的商品。本研究以取貨和補貨問題及庫存路徑問題,並以每期商家訂購量及顧客最終的購買量,建立在路徑規劃上配送之數學模型,當購買數量變動幅度大時,可以透過超商間彼此共同承擔相關成本,其中包含損失成本、運輸成本、庫存成本。現實生活中,每個店家因需求不確定,而又因每次配送數量有公司策略限制,所以在本研究中,考慮到需求的不確定性,提出一種在車輛間運送商品到各個商家時,得以調配有過多商品放置過久未銷售問題,使各個商家藉由調配商品模式,達到每間商品易腐性商品的庫存得以平衡,即不單從配送中心直接送貨,並可考量各商家所擁有的易腐性商品數量,調配商家間庫存的數量。所提出的調配配送方式所建立的模型及其算法,分析驗證可行是能夠降低損壞成本,在小型實例中,在兩種配送模式路徑相同時,所提出的配送型態,能夠有效降低損壞成本,當問題規模大時,為了達到配送需求,導致車輛使用成本增加,且求解路徑不是最短路徑而是最佳配送路徑,路徑成本隨之上升。研究結果發現,商家間若有調配作業,會使原先配送路線改變,導致路徑成本的上升,但是在損壞成本有明顯下降。

    More and more people in Taiwan are inclined to eat out because convenience stores are numerous and convenient. However, the perishable products that stores provide will be destroyed if they are not sold within a designated period of time, which may result in a large loss of revenue and increased food waste. Due to the headquarters’ marketing strategy, it prefers to distribute a large number of products and to increase possible selling volumes, which causes the goods to have a high probability of retention. This study focuses on reducing food waste. In the case of not changing the business strategy, we consider to redistribute the products of each store during the vehicle delivery process. This study is based on the pickup and delivery problem and the inventory routing problem. According to the order quantities and the inventory levels at the end of each period of each store, a mathematical model of the distribution on the route planning is established. The objective is to minimize the relevant costs, including the vehicle usage costs, damage costs, transportation costs, and inventory costs. The model without redistribution the products among stores is also established for comparison. In the small-sized cases, when two delivery model paths are the same, the proposed delivery type can effectively reduce the damage costs. When the problem scale is large, in order to meet the distribution demand, the vehicle use costs increase, and the solution path is not the shortest path in the optimal cost of delivery, and the path costs increase accordingly. The results indicate that the inventory transshipment model among stores is better than the current delivery model.

    摘要 i 英文摘要 ii 誌謝 vi 目錄 vii 表目錄 x 圖目錄 xi 第一章 緒論1 1.1研究背景及動機1 1.2研究範圍限制與目的3 1.3研究流程與架構4 第二章 文獻探討5 2.1易腐性商品5 2.1.1.易腐性商品類型5 2.1.2.易腐商品庫存模式和訂購模式6 2.1.3.零售商易腐商品銷售策略及消費者購買心理8 2.2車輛路徑問題 (VRP)9 2.2.1.具有時間窗的車輛路徑問題 (VRPTW)10 2.2.2.庫存路徑問題 (IRP)11 2.3收送貨問題 (PDP)13 2.4多種商品配送問題14 2.5小結15 第三章 模式建構 16 3.1問題描述16 3.2研究流程17 3.3模式一:商家間無調配商品模式18 3.3.1研究假設19 3.3.2符號定義20 3.3.3模式建立21 3.4模式二:商家間有調配商品模式23 3.4.1研究假設25 3.4.2符號定義26 3.4.3模式建立27 3.5小結31 第四章 求解方法32 4.1軟體求解32 4.1.1參數設置32 4.1.2求解結果33 4.2結果分析34 4.3參數分析36 4.4演算法架構與流程39 4.2.1禁忌搜尋法 (TS)39 4.2.2求解流程與準則42 4.5演算法求解結果45 4.6小結46 第五章 結論與建議47 5.1研究結論47 5.2研究限制47 5.3未來研究方向48 參考文獻 49 附表A 禁忌搜索法程式碼54 附表B 商家間相對距離59 附表C 結果明細61

    龔成潔 (2011)。 倉儲與配送管理。 中國大陸:大陸中國人民大學出版社。
    Aelion, V., Castells, F., & Veroutis, A. (2006). Life cycle inventory analysis of chemical processes. Environmental Progress & Sustainable Energy, 14(3), pp. 193-200.
    Ana, O., & Lidija, S. Z. (2008). A vehicle routing algorithm for the distribution of fresh vegetables and similar perishable food. Journal of Food Engineering, 85(2), pp. 285-295.
    Anily, S., & Federgruen, A. (1990). Two-echelon distribution systems with vehicle routing costs and central inventories. Operations Research , 41(1), pp. 2-234.
    Archetti, C., Bertazzi, L., Laporte, G., & Speranza, M. G. (2007). A branch-and-cut algorithm for a vendor managed inventory routing problem. Transportation Science, 41(3), pp. 382-391.
    Axtman, B. (2006). Ripe opportunities. Progressive Grocer, 85(4), pp. 76-80.
    Baldacci, R., Bartolini, E., & Mingo, A. (2011). An exact algorithm for the pickup and delivery problem with time windows. Operations Research, 59(2), pp. 414-426.
    Ballou, R. H. (1992). Business Logistics Management. (2nd ed. ed.). New York: Prentice Hall.
    Bell, W. J., Dalberto, L. M., Fisher, M. L., Greenfield, A. J., Jaikumar, R., Kedia, P., & Prutzman, P. J. (1983). Improving the distribution of industrial gases with an on-line computerized routing and scheduling optimizer. Interfaces, 13(6), pp. 4-23.
    Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., & Laporte, G. (2007). Static pickup and delivery problems: a classification scheme and survey. Spanish Society of Statistics and Operations Research, 15(1), pp. 1-31.
    Blackburn, J., & Scudder, G. (2009). Supply chain strategies for perishable products : the case of fresh produce. Production and Operations Management, 18(2), pp. 37-129.
    Bodin, L. D., & Golden, L. B. (1981). Classification in Vehicle Routing and Scheduling. Networks, 11(2), pp. 97-108.
    Brodheim, E., Derman, C., & Prastacos, G. (1975). On thee valuation of a class of inventory policies for perishable products such as blood. Management Science, 21(11), pp. 50-132.
    Chen, K. H., Hsueh, F. C., & Chang, S. M. (2009). Production scheduling and vehicle routing with time windows for perishable food products. Computers & Operations Research, 36(7), pp. 2311-2319.
    Chen, M. L., & Sapra, A. (2013). Joint inventory and pricing decisions for perishable products with two‐period lifetime. Naval Research Logistics, 60(5), pp. 343-366.
    Cumming, D. P., Kendall, E. K., Pegels, C. C., & Seagle, P. J. (1976). A collections planning model for regional blood suppliers : description and validation. Management Science, 22(9), pp. 71-96.
    Dror, M., & Ball, M. (1987). Inventory/routing: Reduction from an annual to a short‐period problem. Naval Research Logistics, 34(6), pp. 891-905.
    Federgruen, A., & Zipkin, P. (1984). Approximations of dynamic, multilocation production and inventory problems. Management Science, 30(1), pp. 1-135.
    Gerardo, B., Jean, C. F., & Gilbert, L. (2010). Dynamic pickup and delivery problems. European Journal of Operational Research, 202, pp. 8-15.
    Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134(1), pp. 1-16.
    Harris, F. W. (1913). How Many Parts To Make At Once. Factory ,The Magazine of Management. 10(2), pp. 135-152.
    Haijema, R. (2013). A new class of stock-level dependent ordering policies for perishables with a short maximum shelflife. International Journal of Production Economics, 143(2), pp. 9-434.
    Hernández‐Pérez, H., & Salazar‐González, J. J. (2014). The multi‐commodity pickup‐and‐delivery traveling salesman problem. Networks, 63(1), pp. 46-59.
    Hernández-Pérez, H., Rodríguez-Martín, I., & González, J. J. (2016). A hybrid heuristic approach for the multi-commodity pickup-and-delivery traveling salesman problem. European Journal of Operational Research, 251(1), pp. 44-52.
    Homayoun, S., & Isa, N. K. (2016). An efficient population based simulated annealing algorithm for the multi-product multi-retailer perishable inventory routing problem. Computers & Industrial Engineering, 99, pp. 189–201.
    Hsu, I. C., Hung, F. S., & Li, C. H. (2007). Vehicle routing problem with time-windows for perishable food delivery. Journal of Food Engineering, 80(2), pp. 465-475.
    Jagannathan, R., & Sen, T. (1991). Storing cross matched blood : a perishable inventory model with prior allocation. Management Science,, 37(3), pp. 66-251.
    Jennings, J. B. (1973). Blood bank inventory control. Management Science, 19(6), pp. 45-637.
    Kiranoudis, T. C., & Tarantilis, D. C. (2001). A meta-heuristic algorithm for the efficient distribution of perishable foods. Journal of Food Engineering, 50(1), pp. 1-9.
    Luca, B., & Grazia, M. S. (2012). Inventory routing problems: an introduction. EURO Journal on Transportation and Logistics, 1(4), pp. 207-326.
    Makoto, F., & Hiroyuki, H. (2006). Jit Is Flow: Practice and Principles of Lean Manufacturing. PCS Press. Inc., ISBN 0-9712436-1-1
    Marjolein, V., Marilène, C., Guy, D., & Gilbert, L. (2017). The pickup and delivery problem with time windows and handling operations. Computers & Operations Research, 77, pp. 127-140.
    Monirehalsadat, M., & Xuesong, Z. (2016). Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations. Transportation Research Part B : Methodological, 89, pp. 19-42.
    Minner, S., & Transchel, S. (2010). Periodicre view inventory control for perishable products underservice level constraints. Operations Research Spektrum, 32(4), pp. 96-979.
    Nagurney A, Yu M, Masoumi H A, & Nagurney S L. (2013). Network sagainst time supply chain analytics for perishable products. NewYork: Springer.
    Nahmias, S. (1982). Perishable inventory theory: a review. European Journal of Operational Research, 30(4), pp. 680-708.
    Nahmias, S. (2011). Perishable inventory systems. International series in operations research & management science (Vol. 160). NewYork: Springer.
    Padmanabhan, G., & Vrat , P. (1995). EOQ models for perishable items under stock dependent selling rate. European Journal of Operational Research, 86(2), pp. 281-292.
    Parragh, N. S., Doerner, F. K., & Hartl, F. R. (2008). A survey on pickup and delivery problems Part II: Transportation between pickup and delivery locations. Journal für Betriebswirtschaft, 58(2), pp. 81-117.
    Raafat, F. (1991). Survey of literature on continuously deteriorating inventory models. Journal of Operational Research Society, 42(1), pp. 27-37.
    Renaud, J., Laporte, G., & Boctor, F. F. (1996). A tabu search heuristic for the multi-depot vehicle routing problem. Computers & Operations Research, 23(3), pp. 229-235.
    Samira, M., & Abbas, S. (2015). Considering lost sale in inventory routing problems for perishable goods. Computers & Industrial Engineering, 87, pp. 213–227.
    Savelsbergh, M. W., & Sol , M. (1995). The general pickup and delivery problem. Transportation Science, 29(1), pp. 17-29.
    Sven, A. (2006). Inventory control. International series in operation sresearch & management science (Vol. 90). NewYork: Springer.
    Thangiah, S. R., & Salhi, S. (2001). Genetic clustering: An adaptive heuristic for the multidepot vehicle routing problem. Applied Artificial Intelligence, 15(4), pp. 361-383.
    Tsiros, M., & Heilman, M. C. (2005). The effect of expiration dates and perceived risk on purchasing behavior in grocery store perishable categories. Journal of Marketing, 69(2), pp. 114-129.
    Van Donselaar, K., Van Wonensel, T., Broekmeulen , R., & Fransoo, J. (2006). Inventory control of perishables in supermarkets. International Journal of Production Economics,104(2), pp. 462-472.
    Wang, X., Wen, H., Yu, B., Wang, X., Zhao, S., & Li, Y. (2016). Pricing for perishable goods in advance selling strategy. 2016 International Conference on Logistics, Informatics and Service Sciences.
    Weiss, H. (1982). Economic order quantity models with nonlinear holding costs. European Journal of Operational Research, 9, pp. 56-60.
    Wendy, W. Q., James, H. B., & Paul, I. (1999). An integrated inventory–transportation system with modified periodic policy for multiple products. European Journal of Operational Research, 115(2), pp. 254-269.
    Zhang, Z., Cheang, B., Li, C., & Lim, A. (2019). Multi-commodity demand fulfillment via simultaneous pickup and delivery for a fast fashion retailer. Computers & Operations Research, 103, pp. 6-81.

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE