| 研究生: |
楊政憲 Yang, Cheng-Hsien |
|---|---|
| 論文名稱: |
以溶膠凝膠法製備二氧化鈦酸鹼度感測器之研究 Preparation of Titania Based pH Sensors by Sol-gel Technique |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 二氧化鈦 、溶膠凝膠 、延伸式閘極場效電晶體 、酸鹼度感測器 |
| 外文關鍵詞: | titania, sol-gel, EGFET, pH sensor |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以異丙醇氧化鈦為前驅鹽, 聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)為黏結劑,利用溶膠凝膠法製備二氧化鈦薄膜 (titania thin film, TTF),探討製備變因對薄膜特性之影響;並以延伸式閘極場效電晶體為基礎,將溶膠以旋轉塗佈方式製備出TTF/FTO pH感測器。針對實驗操作變因:溶膠組成、塗佈轉速、塗佈次數及煅燒溫度等因素加以探討,並探討不同變因所得元件之pH感測特性。此外,以最佳感測元件進行操作溫度、遲滯、時漂及金屬離子干擾等特性之分析。
實驗結果顯示,Ti/PVP比例對TTF表面形態影響甚鉅,當Ti/PVP比例大於5時,TTF呈網狀結構;反之呈顆粒結構。塗佈轉速增加時,TTF膜厚隨之減小,膜電阻亦減小。當製備條件為PVP濃度為3 wt%、鈦前驅鹽濃度為35 wt%、反應溫度為25.1oC、塗佈轉速為3000 rpm、塗佈次數為一次及煅燒溫度為700oC時,所得元件(P3Ti35T70)之pH感測性能最佳,靈敏度達到54.01 mV/pH,線性度達到0.9968。
進一步探討此元件之感測溫度係數及長時間之穩定性,結果發現,隨著感測溫度增加,感測靈敏度大致呈線性增加,溫度係數估算為0.8978。另外,遲滯位移電位為6.4 mV;元件經5~12小時測試,在pH 2、7、12中之時漂值分別為10.3 mV/h、0.57 mV/h、2.83 mV/h,顯示薄膜在中性溶液中具良好之長期穩定性。此外,在pH 7緩衝溶液中添加鈉及鉀離子,結果發現,量測之閘極電壓並無顯著變化,顯示此元件對氫離子感測有極佳之選擇性。
In this work, titania thin films (TTFs) were prepared from tetra-isopropoxide with polyvinylpyrrolidone (PVP) via the sol-gel route. The effects of preparation conditions on properties of films were investigated. Furthermore, TTF/FTO pH sensors based on the extended gate-field-effect transistor (EGFET) were fabricated by spin-coating. The influence of experimental conditions including sol composition, spin speed, number of spinning, and calcination temperature on pH sensing characteristics of the resulting devices were investigated. In addition, sensitivities of the best device were measured at different temperatures. The hysteresis, drift, and metal ion interference were also studied.
From the experimental results, it showed the surface morphologies of TTFs were strongly affected by the Ti/PVP ratio. As the ratio was greater than 5, the TTF showed a net structure; otherwise it showed a particulate structure. With increasing the spin speed, the thickness of TTF was decreased, resulting in the decrease of the electric resistance of TTF. The result found that the best device (denoted as P3Ti35T70 device) was fabricated at the optimal conditions: 3 wt% PVP, 35 wt% Ti, reaction temperature of 25.1oC, spin speed of 3000 rpm, spin number of 1, and calcination temperature of 700oC. The P3Ti35T70 device showed a high sensitivity of 51.41mV/pH with a linearity of 0.9986 at 298.1K in the pH range from 2 to 12.
To further investigate the sensing temperature coefficient and long-term stability, it found that the sensitivity was increased with linearly increasing the sensing temperature. The temperature coefficient in the sensitivity of the device was estimated as 0.8978. Besides, the voltage drift of the hysteresis was about 6.4 mV with a loop path of pH 7→4→7→10→7, and the drift rate at pH 2, 7 and 10 were 10.28, 0.57 and 2.83mV/h, respectively. This revealed that the TTF exhibited a good long-term stability in the neutral solution. Moreover, the additions of sodium and potassium ions in the pH 7 buffer resulted in negligible effects of sensing, which indicated the studied device exhibited high selectivity toward hydrogen ions.
1. S. L. Glab, A. Hulanicki, G. Edwall and F. Ingman, ”Metal-metal oxide and metal oxide electrodes as pH sensors”, Crit. Rev. Anal. Chem., 21, 29-47, 1989.
2. O. Korostynska, K. Arshak, E. Gill and A. Arshak, “Review on state-of-the-art in polymer based pH sensors”, Sensors, 7, 3027-3042, 2007.
3. J. Janata, “Do optical sensors really measure pH? ”, Anal. Chem., 59, 1351-1356, 1987.
4. Y. Cui, Q. Wei, H. Park and C. Lieber, ”Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species”, Science,293, 1289 – 92, 2001.
5. J. Goicoechea, C.R. Zamarreno, I.R. Matias and F.J. Arregui, "Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red", Sensor Actuat. B-chem., 132, 305–311, 2008.
6. R. Bashir, J. Z. Hilt and O. Elibol, A. Gupta, and N. A. Peppas, “Micromechanical cantilever as an ultrasensitive pH microsensor” Appl. Phys. Lett., 81, 3091 – 3093, 2002.
7. A. Talaie, J. Y. Lee, Y. K. Lee, J. Jang, J. A. Romangnoli and T. Taguchi, “Dynamic sensing using intelligent composite: an investigation to development of new pH sensors and electrochromic devices”, Thin Solid Films, 6, 163-166, 2000.
8. M. Yuqing, C. Jianrong and F.Keming, "New technology for the detection of pH ", J. Biochem. Biophys. Methods, 63, 1 – 9, 2005.
9. P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements, IEEE Trans. Biomed. Eng., 17, 70-71, 1970.
10. D. L. Harame, L. J. Bousse, J. D. Shott and J. D. Meindl, “Ion-sensing devices with silicon nitride and borosilicate glass insulators”, IEEE T. Electron Dev., 34, 1700-1707, 1987.
11. M. N. Niu, X. F. Ding and Q. Y. Tong, “Effect of two types of surface sites on the characteristics of Si3N4-gate pH-ISFETs”, Sensor Actuat. B-chem., 37, 13-17, 1996.
12. A. Garde, J. Alderman and W. Lane, “Development of a pH-sensitive ISFET suitable for fabrication in a volume production environment”, Sensor Actuat. B-chem., 27, 341-344, 1995.
13. H. H. L. Bousse, V. D. Vlekkert and N. F. D. Rooij, “Hysteresis in Al2O3-gate ISFETs”, Sensor Actuat. B-chem., 2, 103-110, 1990.
14. M. J. Schoning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordos and H. Lüth, “A highly long-term stable silicon-based pH sensor fabricated by pulsed laser deposition technique”, Sensor. Actuat. B-chem., 35, 228-233, 1996。
15. D. H. Kwon, B. W. Cho, C. S. Kim and B. K. Sohn, “Effect of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISEFT”, Sensor. Actuat. B-chem., 34, 350-353, 1996.
16. T. Mikolajick, R. Kuhnhold and H. Ryssel, “The pH-sensing properties of tantalum pentoxide films fabricated by metal organic low pressure chemical vapor deposition”, Sensor. Actuat. B-chem., 44, 262-267, 1997.
17. H. K. Liao, L. L. Chi, J. C. Chou, W. Y. Chung, T. P Sun and S. K. Hsiung, “Study on pHPZC and surface potential of tin oxide gate ISFET”, Mater. Chem. Phys., 59, 6-11,1999.
18. L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensingmembrane”, Mater. Chem. and Phys., 63, 19-23, 2000.
19. J. C. Chou and J. L Chiang, “Ion sensitive field effect with amorphous tungsten trioxide gate for pH sensing”, Sensor Actuat. B-chem., 62, 81-87,2000.
20. J. V. D. Spiegel, I. Lauks, P. Chan and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe”, Sensor Actuat. B-chem., 4, 291-298, 1983.
21. 吳朗,感測與轉換-原理、元件與應用,三版,全欣資訊,民國82 年385-387。
22. 武世香、虞惇、王貴華,化學量傳感器,感測器技術,第1期,57-62, 1990。
23. T. Katsube, T. Araki, M. Hara, T. Yaji, S. Kobayashi and K. Suzuki, “A multi-species biosensor with extended-gate field effect transistors”, Proceeding of 6th Sensor Symposium, Tsukuba, Japan, 211-214, 1986.
24. J. G. Yu, X. J. Zhao and Q. N. Zhao, “Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method“, Mater. Chem. Phys., 69, 25-29, 2001.
25. S. Takeda, S. Suzuki, H. Odaka and H. Hosono, “Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering”, Thin Solid Films, 392, 338-344, 2001.
26. M. Okuya, K. Nakade and S. Kaneko, “Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells“, Sol. Energ. Mat. Sol. C., 70,425-435, 2002.
27. 伍維君,”高感度二氧化鈦氫氣感測器之製備及其感測特性研究”,成功大學化工系碩士論文(2011).
28. U. Diebold, “Structure and properties of TiO2 surfaces: a brief review”, Appl. Phys. A, 76, 681–687, 2003.
29. U. Diebold, “The surface science of titanium dioxide”, Sur. Sci. Rep., 48, 53–229, 2003.
30. S. D. Mo and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: rutile, anatase and brookite”, Phys. Rev. B, 51, 13023–13032, 1995.
31. N. Kaliwoh, J. Y. Zhang and I. W. Boyd, “Titanium dioxide films prepared by photo-induced sol–gel processing using 172 nm excimer lamps”, Surf. Coat. Tech., 125, 424–427, 2000.
32. F. Dacurrrr, P. Y. Sruousr and R. Rov, Pressure-temperature studies of anatase, brookite, rutile and TiO2-II, The American Mineralogist, 53, 1929-1939,1968.
33. N. Kaliwoh, J. Y. Zhang and I. W. Boyd, “Titanium dioxide films prepared by photo-induced sol-gel processing using 172 nm excimer lamps”, Surf. Coat. Tech., 125, 424-427, 2000.
34. R. A. Zoppi, B. C. Trasferetti and C. U. Davanzo, “Sol-gel titanium dioxide thin films on platinum substrates: preparation and characterization”, J. Electroanal. Chem., 544, 47-57, 2003.
35. W. Shangguan, A. Yoshida and M. X. Chen, “Physicochemical properties and photocatalytic hydrogen evolution of TiO2 films prepared by sol-gel processes”, Sol. Energ. Mat. Sol. C., 80, 433-441, 2003.
36. D. Glog, P. Frach, O. Zywitzki, T. Modes, S. Klinkenberg and C. Gottfried, Surf. Coat.Tech., 200, 967, 2005.
37. N. Kaliwoh, J. Y. Zhang and I.W. Boyd, “Titanium dioxide films prepared by photo-induced sol–gel processing using 172 nm excimer lamps”, Surf. Coat. Tech.,125, 424-427, 2000.
38. K. Okuyama, M. Shimada, T. Fujimoto, T. Maekawa, K. Nakaso and T. Seto, “Effects of preparation conditions on the characteristics of titanium dioxide particles produced by a CVD method”, J. Aerosol Sci., 29, 907-908, 1998.
39. E. H. Wagner, T. Bret and P. Hoffmann, “Light-induced chemical vapour deposition painting with titanium dioxide”, Appl. Surf. Sci., 208–209, 663-668, 2003.
40. R. Zhao, M. Xu, J. Wang and G. Chen, “A pH sensor based on the TiO2 nanotube array modified Ti electrode”, Electrochimica. Acta. , 55, 5647–5651, 2010.
41. Y. Chen, S. C. Mun and J. Kim, “A wide range conductometric pH sensor made with titanium dioxide/multiwall carbon nanotube/cellulose hybrid nanocomposite”, IEEE Sens. J., 1-9, 2013.
42. S. Y. Yang, C. W. Chen and J. C. Chou, “Investigation on the sensitivity of TiO2: Ru pH sensor by Taguchi design of experiment”, Solid-State Electron., 77, 82–86, 2012.
43. Y. H. Liao and J. C. Chou, “Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol–gel method”, Mater. Chem. Phys., 114 542–548, 2009.
44. P. K. Shin, “The pH-sensing and light-induced drift properties of titanium dioxide thin films deposited by MOCVD”, Appl. Surf. Sci., 214, 214-221, 2003.
45. C. Ludwig and P. W. Schindler, “Surface complexation on TiO2”, J. Colloid Interf. Sci., 169, 284-290, 1995.
46. S. H. Hsiao, J. L. Lin, Y. L. Chin and T. P. Sun, ”Detection and combination of acid-base solution and UV light using a TiO2 sensor”, Sensor Lett., 6, 1010-1013, 2008.
47. J. L. Chiang, P. C. Yao, M. C. Lee and Y. Y. Lin, Proceedings of the 6th East Asian Conference on Chemical Sensors (EACCS-6), Guilin, China, 346–347, 2005.
48. J. C. Chou and C. W. Chen, “Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs”, IEEE SENSOR J. , 9, 277-284, 2009
49. C. J. Brinker and G. W. Scherer, “The Physics and Chemistry of Sol-gel Processing”, Academic press, Inc., New York, 1990.
50. 陳慧英,黃定加,朱秦億,“溶膠凝膠法在薄膜製備上之應用”, 化工技術, 第七卷, 第十一期, 152-166, 1999.
51. U. Schubert, New J. Chem., 18, 1049,1994.
52. J. Blum, D. Avnir and H. Schumann, “Sol-gel encapsulated transition-metal catalysts”, Chem. Tech., 29, 32-38, 1999.
53. O. S. Wolfbeis, R. Reisfeld and I. Oehme, Struct. Bond., “Sol-gels and chemical sensors”,Struct. Bond., 85, 51-98, 1996.
54. J. Lin and C.W. Brown, “Sol-gel glass as a matrix for chemical and biochemical sensing”, Trends Anal. Chem., 14, 200-211, 1997
55. C. J. Brinker, N. K. Raman, M. N. Logan, R. Sehgal, R. A. Assink, D. W. Hua and T. L. Ward, “Structure-property relationships in thin films and membranes”, J. Sol–gel Sci. Tech., 4, 117-133, 1995.
56. Z. Zeng, W. Qiu and Z. Huang, “Solid-phase microextraction using fused-silica fibers coated with sol−gel-derived hydroxy-crown ether”, Anal. Chem., 73, 2429-2436, 2001.
57. M. T. Dulay, J. P. Quirino, B. D. Bennett and R. N. Zare, “Bonded-phase photopolymerized sol-gel monoliths for reversed phase capillary electrochromatography “, J. Sep. Sci., 25, 3-9 ,2002.
58. A. C. Acta, “A review on development of solid phase microextraction fibers by sol–gel methods and their applications”, Anal. Chim. Acta., 610, 1–14, 2008.
59. R. D. Gonzalez and H. Miura, “Preparation of SiO2-supported and Al2O3-supported clusters of Pt group-metals”, Catal. Rev. Sci. Eng., 36, 145-177, 1994.
60. D. Andreeva, L. Ilieva, V. Idakiev, T. Tabakova, P. Falaras, A. Bourlinos and A. Travlos, “Low-temperature water-gas shift reaction over Au/CeO2 catalysts”, Catal. Today, 72, 51-57, 2002.
61. I. P. Bergveld, “ISFET, Theory and Practice”, IEEE Sensor conference, Toronto, 2003.
62. P. Bergveld and A. Sibbald, “Analytical and biomedical applications of ion-selective field-effect transistors”, Elsevier Science publishing Company Inc., New York, America, 1988.
63. J. C. Chou, and C. W. Chen, “Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs”, IEEE Sensor. J., 9, 277-284, 2009.
64. W. Y. Chung, F. R. G. Cruza and H. Szu, “Electronic tongue system for remote multi-Ion sensing using blind source separation and wireless sensor network”, Proc. of SPIE, 7703, 77030A1-8.
65. D. E. Yatess, A. Vine and T. Healy, “Site-binding model of the electrical double layer at the oxide/ water interface”, J. Chem. Soc., Faraday Trans. ,1 ,70, 1807-1818, 1974.
66. E. Gileadi, E. K. Eisner and J. Penciner, “Interfacial electrochemistry, an experimental approach”, Addison-Wesley Publish Company Inc., USA, 4-6, 1975.
67. J. F. Hutton, K. Walter and H. A. Barnes, “An Introduction to Rheology”, Elsevier Science publishing Inc, 1993.
68. Y. Xu, D. Wu, Y. Sun, W. Chen, H. Yuan, F. Deng and Z. Wu, “Effect of polyvinylpyrrolidone on the ammonia-catalyzed sol–gel process of TEOS: Study by in situ Si NMR, scattering, and rheology”, Colloid Surface A, 305, 97–104, 2007.
69. N. Negishi and K. Takeuchi, “Structural changes of transparent TiO2 thin films with heat treatment”, Mater. Lett., 38, 150-153, 1999.
70. J. S. Lee, Y. I. Lee, H. Song, D. H. Jang and Y. H. Choa, ” Synthesis and characterization of TiO2 nanowires with controlled porosity and microstructure using electrospinning method”, Curr. Appl. Phys.s, 11, 210-214, 2011.
71. P. K. Shin, “The pH-sensing and light-induced drift properties of titanium dioxide thin films deposited by MOCVD”, Appl. Surf. Sci. 214, 214–221, 2003.
72. D. S. Lee and T. K. Liu, “Preparation of TiO2 sol using TiCl4 as a precursor”, J. Sol-gel Sci. tech., 25, 121–136, 2002.
73. N. Veronovski, M. S. Smole, and J. L. Viota, “Characterization of TiO2/TiO2–SiO2 coated cellulose textiles”, Text. Res. J., 80, 55–62, 2010.