簡易檢索 / 詳目顯示

研究生: 魏睿賢
Wei, Rui-Xian
論文名稱: 在無線行動網路中使用時間及地理位置進行頻寬估計方法的用戶體驗為中心之逐步自適性影音串流技術
QoE-Centric Stepwise Adaptive Video Streaming using the Temporal-Geo Bandwidth Estimation Method in the Wireless Mobile Network
指導教授: 黃崇明
Huang, Chung-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 57
中文關鍵詞: 行動影像基於地理位置的預測基於超文本傳輸協定的自適性串流自適性串流適地性服務
外文關鍵詞: Mobile video, Temporal- Geo Bandwidth map, MPEG-DASH, Adaptive streaming, Location-based service
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著無線行動通訊技術的演進,影像串流在這些年裡也進步了很多。然而因為行動裝置使用者通常一邊移動一邊播放串流影片,因此無線行動網路環境通常在可用頻寬上有很大的高低振盪。為了克服這種情況,我們提出了一個方法稱作「使用時間及地理位置進行頻寬估計方法之逐步自適性影音串流技術」,它是一組基於MPEG-DASH標準並適用於無線行動網路環境的自適性影音串流架構及控制方案。為了取得更好的用戶體驗(QoE),本論文提出的方法在預測可用頻寬上考量到地理位置、日期及時段,並且在自適性串流控制方案上考慮了緩衝層級、最近下載的影像片段的品質、最近下載的影像片段的下載速率和預測可用頻寬來決定下一個要下載的影像片段的品質。本論文提出的方法已被實作出來,在客戶端上基於安卓(Android)系統,伺服器端則是基於Linux。本論文也展示了一個具代表性的通勤路徑的無線行動網路的可用頻寬分布,並揭露了該路徑具有高可用頻寬的同時在可用頻寬上也有著很大的高低振盪。使用本論文提出的方法進行的實驗展示了此方法在無線行動網路環境上的頻寬使用率、初始延遲時間、播放暫停次數、影像品質變動百分率、平均每影像片段的位元率變動、考量到播放暫停的平均位元率變動及位元率變動的標準差都有著效能改進。

    With the advance of wireless mobile communication technologies, video streaming has advanced much more on these years. However, the wireless mobile networking environment usually suffers fluctuation in available bandwidth because mobile users usually keep moving and playing streaming video simultaneously. To overcome the situation, this work proposed a method called Stepwise Adaptive Streaming using Temporal-Geo Bandwidth Estimation (SASTGBE) used for the wireless mobile networking environment based on MPEG-DASH. To have better Quality Of Experience (QoE), the proposed method considers geo, date, and time concerns for estimating the available bandwidth in the future and the proposed adaptive streaming control scheme considers buffer level, video quality of the most recently downloaded segment, the downloading rate of the most recently downloaded segment and the estimated bandwidth to decide the video quality for the next downloaded segment. The proposed method has been implemented in the Android system for the client side and the Linux system for the server side. The experiments using SASTGBE in the real environment shown that SASTGBE has improvement in the performance of bandwidth utilization, initial delay time, suspended times, quality switch percentage, bitrate difference per segment, average bitrate difference considering suspending, and standard deviation of bitrate difference over the wireless mobile network.

    List of Figures........................................................................VII List of Tables...........................................................................IX Chapter 1 Introduction..............................................................1 Chapter 2 Related Work...........................................................6 2.1 Video Streaming over HTTP..........................................6 2.2 Geo-Adaptive Streaming................................................8 Chapter 3 The Proposed Architecture and Main Issues......... 11 3.1 System Components......................................................12 3.2 Main technique issues...................................................14 Chapter 4 Temporal-Geo Bandwidth Estimation....................16 Chapter 5 The Stepwise Adaptive Streaming Algorithm........22 5.1 Main Concerns..............................................................22 5.2 Description....................................................................24 Chapter 6 Performance Analysis.............................................28 6.1 Datasets.........................................................................28 6.2 Evaluation Metrics........................................................34 6.3 The General Trend of Experimental Results.................36 6.4 Experimental Results of an Individual Session.............41 Chapter 7 Conclusion and Future Work..................................52 Bibliography.............................................................................54

    [1] "Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021 White Paper," 2017.
    [2] D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha, "Streaming video over the Internet: approaches and directions," IEEE Transactions on circuits and systems for video technology, vol. 11, no. 3, pp. 282-300, 2001.
    [3] D. Lee, B. E. Carpenter, and N. Brownlee, "Observations of UDP to TCP ratio and port numbers," in Proceedings of the 5th IEEE International Conference on Internet Monitoring and Protection (ICIMP), pp. 99-104, 2010.
    [4] O. Oyman and S. Singh, "Quality of experience for HTTP adaptive streaming services," IEEE Communications Magazine, vol. 50, no. 4, pp. 20-27, 2012.
    [5] V. K. Adhikari et al., "Unreeling netflix: Understanding and improving multi-cdn movie delivery," in Proceedings of the 31st Annual IEEE International Conference on Computer Communications, pp. 1620-1628, 2012.
    [6] J. Añorga, S. Arrizabalaga, B. Sedano, M. Alonso-Arce, and J. Mendizabal, "YouTube’s DASH implementation analysis," in Proceedings of 19th International Conference on Circuits, Systems, Communications and Computers (CSCC), pp. 61-66, 2015.
    [7] S. Akhshabi, A. C. Begen, and C. Dovrolis, "An experimental evaluation of rate-adaptation algorithms in adaptive streaming over HTTP," in Proceedings of the 2nd annual ACM conference on Multimedia systems, pp. 157-168, 2011.
    [8] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis, "What happens when HTTP adaptive streaming players compete for bandwidth?," in Proceedings of the 22nd international workshop on Network and Operating System Support for Digital Audio and Video, pp. 9-14, Toronto, Ontario, Canada, 2012.
    [9] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hobfeld, and P. Tran-Gia, "A survey on quality of experience of HTTP adaptive streaming," IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469-492, 2015.
    [10] J. Kua, G. Armitage, and P. Branch, "A Survey of Rate Adaptation Techniques for Dynamic Adaptive Streaming over HTTP," IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1842-1866, 2017.
    [11] T. Zhao, Q. Liu, and C. W. Chen, "QoE in Video Transmission: A User Experience-Driven Strategy," IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp. 285-302, 2017.
    [12] C. M. Lentisco, L. Bellido, and E. Pastor, "QoE-Based Analysis of DASH Streaming Parameters Over Mobile Broadcast Networks," IEEE Access, vol. 5, pp. 20684-20694, 2017.
    [13] M. Gadaleta, F. Chiariotti, M. Rossi, and A. Zanella, "D-DASH: a Deep Q-learning Framework for DASH Video Streaming," IEEE Transactions on Cognitive Communications and Networking, no. 99, pp. 1-15, 2017.
    [14] G. Wainer and S. Fernandes, "Improving video streaming over cellular networks with DASH-based device-to-device streaming," in Proceedings of the 2017 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), pp. 1-8, 2017.
    [15] J. Jiang, V. Sekar, and H. Zhang, "Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with FESTIVE," in Proceedings of the 8th International Conference on Emerging Networking Experiments and Technologies, pp. 97-108, Nice, France, 2012.
    [16] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz, "Adaptation algorithm for adaptive streaming over HTTP," in Proceedings of the 19th International Packet Video Workshop (PV), pp. 173-178, 2012.
    [17] G. Tian and Y. Liu, "Towards agile and smooth video adaptation in dynamic HTTP streaming," in Proceedings of the 8th International Conference on Emerging Networking Experiments and Technologies, pp. 109-120, Nice, France, 2012.
    [18] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen, "Video streaming using a location-based bandwidth-lookup service for bitrate planning," ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), vol. 8, no. 3, pp. 1-19, 2012.
    [19] J. Hao, R. Zimmermann, and H. Ma, "GTube: geo-predictive video streaming over HTTP in mobile environments," in Proceedings of the 5th ACM Multimedia Systems Conference, pp. 259-270, Singapore, Singapore, 2014.
    [20] R. Dubin, A. Dvir, O. Pele, O. Hadar, I. Katz, and O. Mashiach, "Adaptation logic for HTTP dynamic adaptive streaming using geo-predictive crowdsourcing for mobile users," Multimedia Systems, pp. 1-13, 2016.
    [21] B. Taani and R. Zimmermann, "Spatio-temporal analysis of bandwidth maps for geo-predictive video streaming in mobile environments," in Proceedings of the 24th ACM on Multimedia Conference, pp. 888-897, Amsterdam, The Netherlands, 2016.
    [22] J. Yao, S. S. Kanhere, and M. Hassan, "Improving QoS in High-Speed Mobility Using Bandwidth Maps," IEEE Transactions on Mobile Computing, vol. 11, no. 4, pp. 603-617, 2012.
    [23] I. D. D. Curcio, V. K. M. Vadakital, and M. M. Hannuksela, "Geo-predictive real-time media delivery in mobile environment," in Proceedings of the 3rd Workshop on Mobile Video Delivery, pp. 3-8, Firenze, Italy, 2010.
    [24] I. Sodagar, "The MPEG-DASH Standard for Multimedia Streaming Over the Internet," IEEE MultiMedia, vol. 18, no. 4, pp. 62-67, 2011.
    [25] ISO/IEC 23009-1, "Dynamic adaptive streaming over HTTP(DASH)-Part1: Media presentation description and segment formats," 2014.
    [26] J. Hwang, J. Lee, and C. Yoo, "Eliminating bandwidth estimation from adaptive video streaming in wireless networks," Signal Processing: Image Communication, vol. 47, pp. 242-251, 2016.
    [27] K. Miller, A.-K. Al-Tamimi, and A. Wolisz, "QoE-based low-delay live streaming using throughput predictions," ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), vol. 13, no. 1, pp. 1-24, 2016.
    [28] A. Sobhani, A. Yassine, and S. Shirmohammadi, "A video bitrate adaptation and prediction mechanism for HTTP adaptive streaming," ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), vol. 13, no. 2, pp. 1-25, 2017.
    [29] S. Wilk, S. Schönherr, D. Stohr, and W. Effelsberg, "EnvDASH: An Environment-Aware Dynamic Adaptive Streaming over HTTP System," in Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video, pp. 113-118, Brussels, Belgium, 2015.
    [30] Y. Yuan, Z. Zhang, and D. Liu, "AG-MS: A User Grouping Scheme for DASH Multicast over Wireless Networks," in Proceedings of the 85th IEEE Vehicular Technology Conference (VTC Spring), pp. 1-5, 2017.
    [31] A. R. Bhat and S. K. Bhadu, "Machine learning based rate adaptation in DASH to improve quality of experience," in Proceedings of the 2017 IEEE International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), pp. 82-89, 2017.
    [32] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, "Commute path bandwidth traces from 3G networks: analysis and applications," in Proceedings of the 4th ACM Multimedia Systems Conference, pp. 114-118, Oslo, Norway, 2013.
    [33] G. Murtaza, A. Reinhardt, M. Hassan, and S. S. Kanhere, "Creating personal bandwidth maps using opportunistic throughput measurements," in Proceedings of the 49th IEEE International Conference on Communications (ICC), pp. 2454-2459, 2014.
    [34] https://durian.blender.org/.

    無法下載圖示 校內:2022-11-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE