簡易檢索 / 詳目顯示

研究生: 范志玲
Fan, Jhih-Ling
論文名稱: 調查伽瑪射線新星發射的可見光與伽瑪射線的時間關係
Survey the Time Correlation between the Optical Light and Gamma-Ray Emission of Gamma-Ray Novae
指導教授: 李君樂
Li, Kwan-Lok
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 53
中文關鍵詞: 伽瑪射線新星
外文關鍵詞: Gamma-rays, novae
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2010 年,NASA 的費米伽馬射線太空望遠鏡(Fermi Gamma-Ray Space Telescope)首次在 V407 Cyg 中檢測到新星的伽馬射線輻射。自此之後,已有 19 顆新星被確認存在伽馬射線對應體。其中,V906 Car 是這 19 顆新星之一,V906 Car的多波段觀測顯示了光學和伽馬射線的光變曲線有高度相關,並有約 5 小時的時間延遲(伽馬射線領先)。然而,其他伽馬射線新星是否也具有類似特徵尚未確定。本研究旨在透過比較費米的伽馬射線觀測數據與 AAVSO 或 BRITE 的光學數據,來探討其他伽馬射線新星是否也呈現相似的關聯性。我們採用了兩種新方法,卡方檢定(chi-squared method)和似然估計法(likelihood method)進行時間關聯分析。由於光學數據品質不穩定,目前大多數結果尚未顯示伽馬射線與光學輻射之間存在顯著的時間領先或延遲。不過我們的新分析方法與前人分析的 V906 Car時間延遲一致,表示這兩個新方法的可靠性。

    In 2010, gamma-ray emission of a nova was detected from V407 Cyg for the first time using NASA's Fermi Gamma-Ray Space Telescope. Since then, gamma-ray counterparts of 19 novae have been detected. V906 Car is one of these 19 novae, and the multi-wavelength investigations of this target showed that the optical and gamma-ray light curves are tightly correlated with a time lag of 5 hours (led by the gamma-rays). However, it is unclear whether similar features can be observed in other gamma-ray novae. This study aims to investigate whether other gamma-ray novae also exhibit similar correlations by comparing the Fermi gamma-ray observations with the optical data of AAVSO and/or BRITE, using two new methods, namely the chi-squared and the likelihood methods. With the unstable quality of optical data, most of the results, so far, do not present significant time lead/lag between the gamma-rays and the optical light. Nevertheless, our new analysis confirms the time lag of V906 Car reported previously, indicating the reliability of the new approaches.

    中文摘要 I Abstract II Acknowledgements III Contents IV List of Tables VI List of Figures VII 1 Introduction 1 1.1 Background 1 1.1.1 White Dwarf Formation 1 1.1.2 Close Binary Star Systems 2 1.1.3 Novae 3 1.1.4 Novae Emit 𝛾-rays 4 1.1.5 𝛾-ray Emission Mechanisms 5 1.2 Motivation 7 1.3 Overview of Methodology 7 1.3.1 Observations 8 1.4 Conclusion 9 2 Data Reduction 10 2.1 Fermi-LAT Observations 10 2.1.1 Selection Criteria for 𝛾-Ray Novae 10 2.1.2 Binned Likelihood Analysis 13 2.2 Optical Data 16 2.2.1 Magnitude and Flux Conversion 16 3 Method 17 3.1 Method I: Minimum Chi-Squared Method 17 3.1.1 Data Processing 17 3.1.2 Chi-Squared Minimization and Time Lag Estimation 18 3.2 Method 2: Maximum Likelihood Estimation 20 3.2.1 Maximum Likelihood Analysis 20 3.2.2 LAT Light Curve Extraction 21 3.2.3 Data preparation 21 3.2.4 Maximum Likelihood by Grid Search 22 3.2.5 Maximum Likelihood by Generic Likelihood Model 22 4 Results 23 4.1 Light Curves 23 4.2 The Results of the Time Correlation Analysis 25 4.2.1 Minimum Chi-Square 26 4.2.2 Maximum Likelihood Estimation by Grid Search 28 4.2.3 Maximum Likelihood Estimation by Generic Likelihood Model 30 4.3 Theory of Internal Radiate Shocks in Classical Novae 33 4.4 Future Work 35 Bibliography 36

    [1] AAVSO. Aavso vision, 2024.

    [2] AAVSO. Visual observing manual, 2025.

    [3] A. A. Abdo, M. Ackermann, M. Ajello, W. B. Atwood, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, et al. Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni. Science, 329(5993):817–821, August 2010.

    [4] A. A. Abdo et al. Fermi Large Area Telescope Observations of the Cosmic-Ray Induced gamma-ray Emission of the Earth’s Atmosphere. Phys. Rev. D, 80:122004, 2009.

    [5] M. Ackermann, M. Ajello, A. Albert, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, R. Bellazzini, E. Bissaldi, R. D. Blandford, E. D. Bloom, E. Bottacini, T. J. Brandt, J. Bregeon, P. Bruel, R. Buehler, S. Buson, G. A. Caliandro, R. A. Cameron, M. Carag-iulo, P. A. Caraveo, E. Cavazzuti, E. Charles, A. Chekhtman, C. C. Cheung, J. Chiang, G. Chiaro, S. Ciprini, R. Claus, J. Cohen-Tanugi, J. Conrad, S. Corbel, F. D’Ammando, A. de Angelis, P. R. den Hartog, F. de Palma, C. D. Dermer, R. Desiante, S. W. Di-gel, L. Di Venere, E. do Couto e Silva, D. Donato, P. S. Drell, A. Drlica-Wagner, C. Favuzzi, E. C. Ferrara, W. B. Focke, A. Franckowiak, L. Fuhrmann, Y. Fukazawa, P. Fusco, F. Gargano, D. Gasparrini, S. Germani, N. Giglietto, F. Giordano, M. Giroletti, T. Glanzman, G. Godfrey, I. A. Grenier, J. E. Grove, S. Guiriec, D. Hadasch, A. K. Harding, M. Hayashida, E. Hays, J. W. Hewitt, A. B. Hill, X. Hou, P. Jean, T. Jogler, G. Jóhannesson, A. S. Johnson, W. N. Johnson, M. Kerr, J. Knödlseder, M. Kuss, S. Larsson, L. Latronico, M. Lemoine-Goumard, F. Longo, F. Loparco, B. Lott, M. N. Lovellette, P. Lubrano, A. Manfreda, P. Martin, F. Massaro, M. Mayer, M. N. Mazz-iotta, J. E. McEnery, P. F. Michelson, W. Mitthumsiri, T. Mizuno, M. E. Monzani, A. Morselli, I. V. Moskalenko, S. Murgia, R. Nemmen, E. Nuss, T. Ohsugi, N. Omodei, M. Orienti, E. Orlando, J. F. Ormes, D. Paneque, J. H. Panetta, J. S. Perkins, M. Pesce-Rollins, F. Piron, G. Pivato, T. A. Porter, S. Rainò, R. Rando, M. Razzano, S. Razzaque, A. Reimer, O. Reimer, T. Reposeur, P. M. Saz Parkinson, M. Schaal, A. Schulz, C. Sgrò, E. J. Siskind, G. Spandre, P. Spinelli, Ł. Stawarz, D. J. Suson, H. Takahashi, T. Tanaka, J. G. Thayer, J. B. Thayer, D. J. Thompson, L. Tibaldo, M. Tinivella, D. F. Torres, G. Tosti, E. Troja, Y. Uchiyama, G. Vianello, B. L. Winer, M. T. Wolff, D. L. Wood, K. S. Wood, M. Wood, S. Charbonnel, R. H. D. Corbet, I. De Gennaro Aquino, J. P. Edlin, E. Mason, G. J. Schwarz, S. N. Shore, S. Starrfield, F. Teyssier, and Fermi-LAT Collaboration. Fermi establishes classical novae as a distinct class of gamma-ray sources. Science, 345(6196):554–558, August 2014.

    [6] René Andrae, Tim Schulze-Hartung, and Peter Melchior. Dos and don’ts of reduced chi-squared. arXiv: Instrumentation and Methods for Astrophysics, 2010.

    [7] W. B. Atwood, A. A. Abdo, M. Ackermann, W. Althouse, B. Anderson, et al. The large area telescope on the gamma-ray space telescope mission. The Astrophysical Journal, 697(2):1071–1102, May 2009.

    [8] Y. Avni. Energy spectra of X-ray clusters of galaxies. The Astrophysical Journal, 210:642–646, December 1976.

    [9] Elias Aydi, Kirill V. Sokolovsky, Laura Chomiuk, Elad Steinberg, Kwan Lok Li, In-drek Vurm, Brian D. Metzger, Jay Strader, Koji Mukai, Ondřej Pejcha, Ken J. Shen, Gregg A. Wade, Rainer Kuschnig, Anthony F. J. Moffat, Herbert Pablo, Andrzej Pigul-ski, Adam Popowicz, Werner Weiss, Konstanze Zwintz, Luca Izzo, Karen R. Pollard, Gerald Handler, Stuart D. Ryder, Miroslav D. Filipović, Rami Z. E. Alsaberi, Perica Manojlović, Raimundo Lopes de Oliveira, Frederick M. Walter, Patrick J. Vallely, David A. H. Buckley, Michael J. I. Brown, Eamonn J. Harvey, Adam Kawash, Alexei Kniazev, Christopher S. Kochanek, Justin Linford, Joanna Mikolajewska, Paolo Molaro, Marina Orio, Kim L. Page, Benjamin J. Shappee, and Jennifer L. Sokoloski. Direct evidence for shock-powered optical emission in a nova. Nature Astronomy, 4:776–780, April 2020.

    [10] Dale A. Ostlie Bradley W. Carroll. An Introduction to Modern Astrophysics. Addison-Wesley Publishing Company, 1996.

    [11] CERN. Why do physicists mention “five sigma” in their results?, 2023.

    [12] C. C. Cheung, P. Jean, S. N. Shore, Ł. Stawarz, R. H. D. Corbet, J. Knödlseder, S. Starrfield, D. L. Wood, R. Desiante, F. Longo, G. Pivato, and K. S. Wood. Fermi-LAT Gamma-Ray Detections of Classical Novae V1369 Centauri 2013 and V5668 Sagittarii 2015. The Astrophysical Journal, 826(2):142, August 2016.

    [13] C. C. Cheung, T. J. Johnson, P. Jean, M. Kerr, K. L. Page, J. P. Osborne, A. P. Beardmore, K. V. Sokolovsky, F. Teyssier, S. Ciprini, G. Martí-Devesa, I. Mereu, S. Razzaque, K. S. Wood, S. N. Shore, S. Korotkiy, A. Levina, and A. Blumenzweig. Fermi LAT Gamma-ray Detection of the Recurrent Nova RS Ophiuchi during its 2021 Outburst. The Astrophysical Journal, 935(1):44, August 2022.

    [14] Laura Chomiuk, Justin D. Linford, Elias Aydi, Keith W. Bannister, Miriam I. Krauss, Amy J. Mioduszewski, Koji Mukai, Thomas J. Nelson, Michael P. Rupen, Stuart D. Ryder, Jennifer L. Sokoloski, Kirill V. Sokolovsky, Jay Strader, Miroslav D. Filipović, Tom Finzell, Adam Kawash, Erik C. Kool, Brian D. Metzger, Miriam M. Nyamai, Valério A. R. M. Ribeiro, Nirupam Roy, Ryan Urquhart, and Jennifer Weston. Classical Novae at Radio Wavelengths. The Astrophysical Journal Supplement Series, 257(2):49, December 2021.

    [15] Laura Chomiuk, Brian D. Metzger, and Ken J. Shen. New Insights into Classical Novae. Annual Review of Astronomy and Astrophysics, 59:391–444, September 2021.

    [16] Michael A. Fligner David S. Moore, William I. Notz. The Basic Practice of Statistics. W.H. Freeman and Company, 41 Madison Ave, New York City, New York 10010, US, 2013.

    [17] Kishalay De, Mansi M. Kasliwal, Matthew J. Hankins, Jennifer L. Sokoloski, Scott M. Adams, Michael C. B. Ashley, Aliya-Nur Babul, Ashot Bagdasaryan, Alexandre Delacroix, Richard Dekany, Timothée Greffe, David Hale, Jacob E. Jencson, Viraj R. Karambelkar, Ryan M. Lau, Ashish Mahabal, Daniel McKenna, Anna M. Moore, Eran O. Ofek, Manasi Sharma, Roger M. Smith, Jamie Soon, Roberto Soria, Gokul Srinivasaragavan, Samaporn Tinyanont, Tony Travouillon, Anastasios Tzanidakis, and Yuhan Yao. A Population of Heavily Reddened, Optically Missed Novae from Palo-mar Gattini-IR: Constraints on the Galactic Nova Rate. The Astrophysical Journal, 912(1):19, May 2021.

    [18] Fermi Science Support Development Team. Fermitools: Fermi Science Tools. Astro-physics Source Code Library, record ascl:1905.011, May 2019.

    [19] Michael Friedjung and Hilmar W. Duerbeck. Models of classical and recurrent novae. In Margherita Hack, Constanze Ladous, Stuart D. Jordan, Richard N. Thomas, Leo Goldberg, and Jean-Claude Pecker, editors, NASA Special Publication, volume 507, pages 371–412. 1993.

    [20] A. C. Gordon, E. Aydi, K. L. Page, Kwan-Lok Li, L. Chomiuk, K. V. Sokolovsky, K. Mukai, and J. Seitz. Surveying the X-Ray Behavior of Novae as They Emit W-Rays. The Astrophysical Journal, 910(2):134, April 2021.

    [21] Gesesew R. Habtie, Ramkrishna Das, Ruchi Pandey, N. M. Ashok, and Pavol A. Dubovsky. Study of the fastest classical nova, V1674 Her: photoionization and morpho-kinemetic model analysis. Monthly Notices of the Royal Astronomical Society, 527(1):1405–1423, January 2024.

    [22] R. M. Hjellming, J. H. van Gorkom, A. R. Taylor, E. R. Sequist, S. Padin, R. J. Davis, and M. F. Bode. Radio Observations of the 1985 Outburst of RS Ophiuchi. Astrophysical Journal Letters, 305:L71, June 1986.

    [23] Jordi José, Jordi Casanova, Enrique García-Berro, Margarita Hernanz, Steven N. Shore, and Alan C. Calder. Classical and Recurrent Nova Models. In Rosanne Di Stefano, Ma-rina Orio, and Maxwell Moe, editors, Binary Paths to Type Ia Supernovae Explosions, volume 281 of IAU Symposium, pages 80–87, January 2013.

    [24] S. R. Kelner and F. A. Aharonian. Energy spectra of gamma rays, electrons, and neutrinos produced at interactions of relativistic protons with low energy radiation. Phys. Rev. D, 78:034013, Aug 2008.

    [25] K. L. Li, Albert K. H. Kong, P. A. Charles, Ting-Ni Lu, E. S. Bartlett, M. J. Coe, V. McBride, A. Rajoelimanana, A. Udalski, N. Masetti, and Thomas Franzen. A Luminous Be+White Dwarf Supersoft Source in the Wing of the SMC: MAXI J0158-744. The Astrophysical Journal, 761(2):99, December 2012.

    [26] Kwan-Lok Li, Elias Aydi, Kirill Sokolovsky, Laura Chomiuk, Adam Kawash, Jay Strader, Koji Mukai, Jeno Sokoloski, and Justin Linford. Fermi-LAT detection of Nova Sco 2019 #2 (V1707 Sco). The Astronomer’s Telegram, 13116:1, September 2019.

    [27] Kwan-Lok Li, Franz-Josef Hambsch, Ulisse Munari, Brian D. Metzger, Laura Chomiuk, Andrea Frigo, and Jay Strader. Fermi-LAT Observations of V549 Vel 2017: A Sublu-minous Gamma-Ray Nova? The Astrophysical Journal, 905(2):114, December 2020.

    [28] Kwan-Lok Li, Brian D. Metzger, Laura Chomiuk, Indrek Vurm, Jay Strader, Thomas Finzell, Andrei M. Beloborodov, Thomas Nelson, Benjamin J. Shappee, Christopher S. Kochanek, José L. Prieto, Stella Kafka, Thomas W. S. Holoien, Todd A. Thompson, Paul J. Luckas, and Hiroshi Itoh. A nova outburst powered by shocks. Nature Astronomy, 1:697–702, September 2017.

    [29] Lupin Chun-Che Lin, Jhih-Ling Fan, Chin-Ping Hu, Jumpei Takata, and Kwan-Lok Li. Investigation of a likely orbital periodicity of Nova Hercules 2021 in X-rays and W-rays. Monthly Notices of the Royal Astronomical Society: Letters, 517(1):L97–L101, November 2022.

    [30] J. D. Linford, V. A. R. M. Ribeiro, L. Chomiuk, T. Nelson, J. L. Sokoloski, M. P. Rupen, K. Mukai, T. J. O’Brien, A. J. Mioduszewski, and J. Weston. The Distance to Nova V959 Mon from VLA Imaging. The Astrophysical Journal, 805(2):136, June 2015.

    [31] P. Martin, G. Dubus, P. Jean, V. Tatischeff, and C. Dosne. Gamma-ray emission from internal shocks in novae. Astronomy & Astrophysics, 612:A38, April 2018.

    [32] J. R. Mattox, D. L. Bertsch, J. Chiang, B. L. Dingus, S. W. Digel, J. A. Esposito, J. M. Fierro, R. C. Hartman, S. D. Hunter, G. Kanbach, D. A. Kniffen, Y. C. Lin, D. J. Macomb, H. A. Mayer-Hasselwander, P. F. Michelson, C. von Montigny, R. Mukherjee, P. L. Nolan, P. V. Ramanamurthy, E. Schneid, P. Sreekumar, D. J. Thompson, and T. D. Willis. The Likelihood Analysis of EGRET Data. The Astrophysical Journal, 461:396, April 1996.

    [33] B. D. Metzger, T. Finzell, I. Vurm, R. Hascoët, A. M. Beloborodov, and L. Chomiuk. Gamma-ray novae as probes of relativistic particle acceleration at non-relativistic shocks. Monthly Notices of the Royal Astronomical Society, 450(3):2739–2748, July 2015.

    [34] Brian D. Metzger, Romain Hascoët, Indrek Vurm, Andrei M. Beloborodov, Laura Chomiuk, J. L. Sokoloski, and Thomas Nelson. Shocks in nova outflows - I. Thermal emission. Monthly Notices of the Royal Astronomical Society, 442(1):713–731, July 2014.

    [35] U. Munari and F. M. Walter. The reddening and distance to recurrent nova V3890 Sgr from interstellar features. The Astronomer’s Telegram, 13069:1, September 2019.

    [36] Thomas Nelson, Koji Mukai, Kwan-Lok Li, Indrek Vurm, Brian D. Metzger, Laura Chomiuk, J. L. Sokoloski, Justin D. Linford, Terry Bohlsen, and Paul Luckas. NuSTAR Detection of X-Rays Concurrent with Gamma-Rays in the Nova V5855 Sgr. The Astrophysical Journal, 872:article id. 86, 8 pp, Feb 2019.

    [37] K. L. Page, N. P. M. Kuin, A. P. Beardmore, F. M. Walter, J. P. Osborne, C. B. Markwardt, J. U. Ness, M. Orio, and K. V. Sokolovsky. The 2019 eruption of recurrent nova V3890 Sgr: observations by Swift, NICER, and SMARTS. Monthly Notices of the Royal Astronomical Society, 499(4):4814–4831, December 2020.

    [38] A. W. Shafter. The Galactic Nova Rate Revisited. The Astrophysical Journal, 834(2):196, January 2017.

    [39] Kirill V. Sokolovsky, Kwan-Lok Li, Raimundo Lopes de Oliveira, Jan-Uwe Ness, Koji Mukai, Laura Chomiuk, Elias Aydi, Elad Steinberg, Indrek Vurm, Brian D. Metzger, Aliya-Nur Babul, Adam Kawash, Justin D. Linford, Thomas Nelson, Kim L. Page, Michael P. Rupen, Jennifer L. Sokoloski, Jay Strader, and David Kilkenny. The first nova eruption in a novalike variable: YZ Ret as seen in X-rays and W-rays. Monthly Notices of the Royal Astronomical Society, 514(2):2239–2258, August 2022.

    [40] J. V. Wall. Practical Statistics for Astronomers - II. Correlation, Data-modelling and Sample Comparison. Quarterly Journal of the Royal Astronomical Society, 37:519, December 1996.

    [41] H. H. Wang, H. D. Yan, L. C. C. Lin, J. Takata, and P. H. T. Tam. Evidence of the W-ray counterpart of nova FM Cir from Fermi-LAT. Monthly Notices of the Royal Astronomical Society: Letters, 531(1):L63–L68, June 2024.

    [42] W. W. Weiss, S. M. Rucinski, A. F. J. Moffat, A. Schwarzenberg-Czerny, O. F. Koudelka, C. C. Grant, R. E. Zee, R. Kuschnig, St. Mochnacki, J. M. Matthews, P. Orlean-ski, A. Pamyatnykh, A. Pigulski, J. Alves, M. Guedel, G. Handler, G. A. Wade, and K. Zwintz. BRITE-Constellation: Nanosatellites for Precision Photometry of Bright Stars. Publications of the Astronomical Society of the Pacific, 126(940):573, June 2014.

    [43] S. S. Wilks. The Large-Sample Distribution of the Likelihood Ratio for Testing Com-posite Hypotheses. Annals Math. Statist., 9(1):60–62, 1938.

    QR CODE