簡易檢索 / 詳目顯示

研究生: 黃學良
Huang, Hsueh-Liang
論文名稱: 線性位移平台高精度光學檢測系統之研製
Development of a high precise optical measuring system for the linear moving stage
指導教授: 王明習
Wang, Ming-Shi
共同指導教授: 覺文郁
Jywe, Wen-Yuh
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 124
中文關鍵詞: 線性位移平台多自由度誤差檢測品質檢測光學尺DVD讀頭導螺桿牙型
外文關鍵詞: linear moving stage, multi-degree-freedom errors measurement, quality measurement, laser encoder, DVD pickup, ballscrew, thread profile
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 線性位移平台在目前精密設備產業中扮演相當重要之角色,伴隨著對高精度設備需求不斷地增長,與對加工精度要求不斷地提昇,線性位移平台的檢測技術已經被視為量測設備開發的重要課題。
    線性位移平台之多自由度誤差大多來自於組裝過程與元件品質。因此本研究以檢測多自由度誤差與平台組裝元件品質之技術為目標,開發具有高精度、高效率與低成本特性之檢測系統。
    在多自由度誤差檢測方面,本研究主要針對線性位移平台運動時所產生之多自由度誤差,成功建構三套高精度之多自由度檢測系統,包括三自由度雷射光學尺系統、三自由度線性位移平台檢測系統與DVD讀頭雷射四自由度線性位移平台檢測系統。本研究提出之系統可應用於線性滑軌、三次元量床、工具機、高精密度X-Y平台等單軸運動的誤差檢測與分析。
    在品質檢測方面,本研究主要針對線性位移平台關鍵元件之一的導螺桿,成功建構一套非接觸式導螺桿與螺帽之牙型檢測系統。此系統可導入生產流程中,並取代目前傳統接觸式檢測方式,具有立即、快速且準確測量的特性。
    本研究所開發之檢測系統主要整合光學設計,電子訊號處理與數學模擬分析三方面技術,可應用於精密機械、光電產業及半導體產業等線性運動相關設備檢測,藉由本文之研究成果可提昇我國精密檢測之技術與設備研發之能力。

    In recent years, the linear moving stage is a main part of the high precise equipment. Because of the increasing requirement of precise equipment and the improvement of the manufacturing precision, the research of measurement systems for linear moving stages has become a main task.
    The errors of multi-degree-of-freedom for linear moving stages are always caused by the assembling process and component qualities. Thus, the researches based on the errors of multi-degree-of-freedom and on the measurement of component quality are developed at the objectives of high accuracy, high efficiency and low cost.
    In the multi-degree-of-freedom measurement, the researches focus on measuring the multi-degree-of-freedom errors of the linear moving stage. The three measuring systems based on multi-degree-of-freedom errors measurement for the linear moving component have been proposed, such as (a) a three-degree-of-freedom laser linear encoder for error measurement of a high precision stage, (b) a high resolution three-degree-of-freedom motion error measuring system for a single-axis linear moving stage and (c) a DVD pickup-based four-degree-of-freedom motion error measuring system for a single-axis linear moving stage. The proposed systems can be applied for measuring linear motion errors of linear guideways, CMM, machine tools, high precision X-Y stage and etc. in the future.
    In the quality measurement, the research is developed for measuring the quality of ballscrews which is one of the key components of linear moving stages, and a novel laser-based measuring system for the thread profile of ballscrews has been proposed. The proposed system can be applied for manufacturing process and for matching up the traditional contact method. The proposed system also exhibits some advantages, such as real-time, high-speed and high precision.
    The proposed method based on optical design, signal process and mathematical analysis can be used not only for measuring the linear motion equipment of precision machines, electro-optical and semiconductor industry but also for improving the development ability for both the technology and the equipment of high precision measurement.

    Contents Chinese Abstract I English Abstract II Acknowledgement IV List of Tables X List of Figures XI List of Abbreviations XVIII List of Symbols XIX Chapter 1 Introduction 1 1.1 Research background and significances 1 1.2 Purposes 1 1.3 Literature review 3 Chapter 2 Related Optical System Principle 13 2.1 Homogeneous coordinate transformation 13 2.2 Geometrical optics 15 2.3 Doppler effect 17 2.4 Astigmatism method 18 2.5 Laser triangulation method 18 2.6 Polarization optics 19 Chapter 3 3-DOF Laser Linear Encoder for Error Measurement of High Precision Stages 23 3.1 The measurement principle and instrument configuration 24 3.1.1 Overall system layout 24 3.1.2 Optical configuration design 25 3.1.3 Mathematical model for measuring the yaw and roll angular errors 30 3.1.4 Mathematical model for measuring the position 30 3.2 Experimental results 33 3.2.1 Calibration test for the angular error measurement system of the 3-DOF laser linear encoder 33 3.2.2 Error measurement of a linear moving stage using the 3-DOF laser linear encoder 35 3.3 Summary 42 Chapter 4 High Resolution 3-DOF Motion Error Measuring System for a Single-Axis Linear Moving Stage 43 4.1 The measurement principle and instrument configuration 44 4.1.1 Overall system layout 44 4.1.2 Optical configuration design 45 4.1.3 Mathematical model for measuring the yaw and pitch angular errors 50 4.1.4 Mathematical model for measuring the position 51 4.2 Experimental results 53 4.2.1 Calibration test for the angular error measurement system of the 3-DOF motion error measuring system 53 4.2.2 Error measurement of a linear moving stage using the 3-DOF motion error measuring system 56 4.3 Summary 61 Chapter 5 DVD Pickup-Based 4-DOF Motion Error Measuring System for a Single-Axis Linear Moving Stage 63 5.1 The measurement principle and instrument configuration 64 5.1.1 Overall system layout 64 5.1.2 Optical configuration design 65 5.1.3 Mathematical model for measuring the pitch, yaw and roll angular error 71 5.1.4 Mathematical model for measuring the horizontal straightness error 75 5.2 Experimental results 76 5.2.1 Calibration test for the angular error measurement system of the 4-DOF optical readhead 76 5.2.2 Calibration test for the straightness error measurement system of the 4-DOF optical readhead 79 5.2.3 Error measurement of a linear moving stage using the 4-DOF optical readhead 82 5.3 Summary 87 Chapter 6 Novel Laser-Based Measuring System for the Thread Profile of Ballscrew 89 6.1 The measurement principle and instrument configuration 90 6.1.1 Traditional contact measuring system for the thread profile of ballscrew 90 6.1.2 Overall system layout 91 6.1.3 Optical configuration design 92 6.1.4 Mathematical model for the laser measurement 94 6.1.5 Error analysis for the proposed system 95 6.2 Experimental results 98 6.2.1 Calibration test for the vertical straightness error of the dual-axis stage 98 6.2.2 Verification test for the novel thread profile measuring system 100 6.2.3 Measurement results and verification for the thread profile of ballscrew 102 6.3 Summary 107 Chapter 7 Conclusions and Future Works 109 7.1 Conclusions 109 7.2 Future works 110 Bibliography 112 Publication List 122 Vita 124

    1. K. Akiyama and H. Iwaoka, “High resolution digital diffraction grating scale encoder.” U.S. Patent No. 4,629,886, 1986.
    2. S. Takamasa, S. Osami and M. Takeo, “Phase locked laser diode interferometry for surface profile measurement,” Appl. Opt., 28(20), 4407-4410, 1989.
    3. D. Post and J.D. Wood, “Determination of thermal strains by Moire interferometry,” Experimental Mechanics, Vol. 29, No. 3, p318-322, 1989.
    4. S. Ishii, T. Nishimura, K. Ishizuka and M. Tsukiji, “Optical type encoder including diffraction grating for producing interference fringes that are processed to measure displacement.” U.S. Patent No. 4,912,320, 1990.
    5. W.F.N. Stephens, “Opto-electonic scale-reading apparatus,” U.S. Patent No. 4,959,542, 1990.
    6. S. Osami, T. Kazuhide and S. Takamasa, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng., 29(12), 1511-1515, 1990.
    7. T. Nishimura, Y. Kubota, S. Ishii, S. Ishizuka and M. Tsukiji, “Encoder incorporating a displaceable diffraction grating.” U.S. Patent No. 5,038,032, 1991.
    8. K. Ishizuka, T. Nishimura and O. Kasahara, “Rotary encoder using reflected light.” U.S. Patent No. 5,036,192, 1991.
    9. A. Spied and A. Teimel, “Position measuring apparatus utilizing two-meam interferences to create phase displaced signals.” U.S. Patent No. 5,120,132, 1992.
    10. K.G. Masreliez, “Position detection and method of measuring position,” U.S. Patent No. 5,104,225, 1992.
    11. D. H. Mollenhauer, P. G. Ifju and B. Han, “A compact, robust and versatile Moireinterferometer,” Optics and Laser in Engineering, Vol. 23, No. 1, pp. 29-40, 1995.
    12. H. Rieder, “Photoelectric position indicator with a light-directing phase grating.” U.S. Patent No. 5,450,199, 1995.
    13. W.W. Chiang and C.K. Lee, “Wavefront reconstruction optics for use in disk drive position measurement system.” U.S. Patent No. 5,442,172, 1995.
    14. Canon Catalog Pub. No.0696sz0.2, Laser Rotary Encoder Catalog, New York, 1996.
    15. A. Taubner and H.J. von Martens, “Diffraction grating interferometer for the accuracy measurement of rotational quantities,” Measurement, Vol. 16, Issue 2, pp. 71-80, 1995.
    16. A. Taubner and H.J. von Martens, “Measurement of angular acceleration, angular velocities and rotation angles by grating interferometry,” Measurement, Vol. 24, No. 1, pp. 21-32, 1998.
    17. D.K. Mitchell and G. Thorburn, “Apparatus for detecting relative movement wherein a detecting means is positioned in the region of natural interference.” U.S. Patent No. 5,486,923, 1996.
    18. S. De Nicola, P. Ferraro and A. Finizio, “Reflective grating interferometer for measuring the focal length of a lens by digital moire effect,” Optics Communications, Vol. 132, No. 5-6,p 432-436, 1996.
    19. M. De Angelis, S. De Nicola and P. Ferraro, “Analysis of moire fringes for measuring the focal length of lenses,” Optics and Lasers in Engineering, Vol. 30, No. 3-4, p279-286, 1998.
    20. J.R. Henshaw, “Opto-electronic scale reading apparatus with differing optical path lenths.” U.S. Patent No. 5,861,953, 1999.
    21. R. Sawada, E. Higurashi, T. Ito, O. Ohguchi and M. Tsubamoto, “Monolithic-integrated microlaser encoder.” Appl. Opt., Vol. 38, No. 33, pp. 6866-6872, 1999.
    22. C.K. Lee, G.Y. Wu, Thomas C.T. Teng, W.J. Wu, C.T. Lin, W.H. Hsiao, H.C. Shih, J.S. Wang, Sam S.C. Lin, Colin C. Lin, C.F. Lee and Y.C. Lin, “A high performance doppler interferometer for advanced optical storage systems,” Japanese J. of Appl. Phy., 38-1(3B), 1730-1741, 1999.
    23. S. Takamasa, M. Mineki, S. Osami and M. Takeo, “Laser-diode interferometer with a photothermal modulation,” Appl. Opt., 38(34), 7069-7075, 1999.
    24. K.C. Fang, C.D. Su and J.I Mou, “Error analysis for a diffraction grating interferometric stylus probing system,” Meas. Sci. Technol.12 pp. 482-490, 2001.
    25. M. Dobosz, “Application of a focus laser bean in a grating interferometer for high-resolution displacement measurements,” Optical Engineering, Vol. 38, No. 6, pp. 958-967, 1999.
    26. A. Kuroda, “Optical displacement measurement system for detecting the relative movement of a machine part.” U.S. Patent 6,166,817, 2000.
    27. J. A Kim, K. C. Kim, E.W. Bae, S. Kim and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Inst., Vol. 71, pp. 3214-3219, 2000.
    28. C. K. Lee, C. C. Wu, S. J. Chen, L. B. Yu, Y. C. Chang, Y. F. Wang and W. J. Wu, “Design and Construction of Linear Laser Encoders That Possess High Tolerance of Mechanical Runout,” Applied Optics, Vol. 43, Issue 31, pp. 5754-5762, 2004
    29. C. H. Liu, H. L. Huang and H. W. Lee, “Five-degrees-of-freedom diffractive laser encoder,” Applied optics, Vol. 49, Issue 14, pp.2767-2777, 2009.
    30. Hewlett Packard Co., “Optics and Laser Heads for Laser Interferometer Positioning Systems,” Product Overview, 2000.
    31. Y. Tanima, “A New Differential Laser Interferometer with a Multiplied Optical Path Difference”, Annals of the CIRP, Vol. 32, pp.449-452, 1983.
    32. G. E. Sommargren, “Linear/angular Displacement Interferometer for Wafer Stage Metrology,” Proc. SPIE, Vol. 1088, pp.268-272, 1989.
    33. J. Ni, P. S. Huang and S. M. Wu, “A Multi-degree-of-Freedom Measuring System for CMM Geometric Error,” Trans ASME J. Engng. Ind, 114, pp.362-369, 1992.
    34. P. S. Huang and J. Ni, “On-line Error Compensation of Coordinate Measuring Machines,” Int. J. Mach. Tools Manufac, Vol. 35, pp.725-738, 1995
    35. O. Nakamura and M. Goto, “Four-beam laser interferometry for three-dimensional microscopic coordinate measurement”, Appl. Opt., Vol. 33, pp. 31-36, 1994.
    36. S. Shimizu, H. S. Lee and N. Imai, “Simultaneous Measuring Method of Table Motion Error in 6 Degrees of Freedom”, Int. J. Japan Soc. Prec. Eng., Vol. 288, pp.273-274, 1994.
    37. P. D. Lin and K. F. Ehmann, “Sensing of Motion Related Errors in Multiaxis Machines”, Trans. of ASME, J. of Dynamic System, Measurement, and Control, Vol.118, pp.425-431, 1996.
    38. S. H. Ye, C. K. Sun and F. Q. Zhou, “Five Degree-of Freedom Measuring System,” ISMTII’96, Hayana Kanagawa Pref., Japan, pp.280-282, 1996.
    39. W. Lee and S. W. Kim, “An Ultraprecision Stage for Alignment of Wafers in Advanced Microlithography,” Prec. Eng., Vol. 21, pp.113-122, 1997.
    40. L. Y. Chou, C. K. Peng and K. C. Fang, “CCD-Based CMM Geometrical Error Measurement Using Fourier Phase Shift Algorithm,” Int. Mach. Tools Manufact., Vol. 37, pp.579-590, 1997.
    41. D. Shu, E. E. Alp, J. Barraza, T. M. Kuzay and T. Mooney, “Optical Design for Laser Doppler Angular Encoder with Sub-nrad Sensitivity”, J. Synchrotron Rad., Vol.5, pp.826-828, 1998.
    42. K. C. Fang, M. J. Chen and W. M. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stage,” Int. J. Mach. Tools. Manufact., Vol. 38, pp.155-164, 1998.
    43. K. C. Fang and M. J. Chen, “A 6-Degree-of-Freedom Measuring System for The Accuracy of X-Y Stages,” Prec. Eng., Vol. 24, pp.15-23, 2000.
    44. C.H. Liu, W.Y. Jywe, C.C. Hsu and T.H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage,” Review of Scientific Instruments, Vol. 76, Is. 5, pp. 055110-055110-6, 2005.
    45. C. Kuang, E. Hong and J. Ni, “A high-precision five-degree-of-freedom measurement system based on laser collimator and interferometry techniques”, Review of Scientific Instruments, Vol. 78, 095105-1-095105-7, 2007.
    46. G.. X. Zhang and R. Hocken, “A Displacement Method for Machine Geometry Calibration,” Annals of the CIRP, Vol. 37, pp.515-518, 1988.
    47. J. Hwang, C.H. Park, W. Gao and S.W. Kim, “A three-probe system for measuring the parallelism and straightness of a pair of rails for ultra-precision guideways”, International Journal of Machine Tools & Manufacture, Vol. 47, pp. 1053-1058, 2007.
    48. F. T. Paziani, B. D. Giacomo and R. H. Tsunaki, “Robot measuring form errors”, Robotics and Computer-Integrated Manufacturing, Vol. 25, pp. 168-177, 2009.
    49. C. H. Liu, Y.R. Jeng, W Y Jywe, S.Y. Deng and T.H. Hsu, “Automatic straightness measurement of a linear guide using a real-time straightness self-compensating scanning stage”, Proc. IMechE Part B: J. Engineering Manufacture, Vol. 223, pp. 1171-1179, 2009.
    50. A. Arredondo, “Technique for determining thread accuracy,” U.S. Patent No. 4,590,678, 1986.
    51. A. Storace and A. V. Yannella, “Thread measurement tool,” U.S. Patent No. 4,672,750, 1987.
    52. J. Masselink, “Screw thread measuring device,” U.S. Patent No. 5,214,856, 1993.
    53. G. Brunson, “Thread pitch diameter measuring system,” U.S. Patent No. 6,145,207, 2000.
    54. G. M. Castore, F. A. Treiber and B. L. Drake, “Laser scanning method and apparatus for rapid precision measurement of thread form,” U.S. Patent No. 5,521,707, 1996.
    55. J. Clark, A. M. Wallace and G. L. Pronzato, “Measuring range using a triangulation sensor with variable geometry,” IEEE Transactions on Robotics and Automation, Vol. 14, No. 1, pp.60-68, 1998.
    56. P. Castellini, A. Scalise and L. Scalise, “A 3-D measurement system for the extraction of diagnostic parameters in suspected skin nevoid lesions,” IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 5, pp.924-928, 2000.
    57. D. Lu, Z.H. Lu and D.W. Feng, “Measuring thread system using laser fiber sensor,” Proceedings of SPIE, Vol. 4920, pp.367-372, 2002.
    58. T.C. Chen, P.H. Hou and J.C. Chiu, “Measurement of the ballscrew contact angle by using the photoelastic effect and image processing,” Optics and Laser in engineering, Vol. 38, pp.87-75, 2002
    59. E. S. Gadelmawla, “A novel system for automatic measurement and inspection of parallel screw threads,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 218, pp.545-556, 2004.
    60. Y.Q. Liu, S.F. Tong, P. Liu, S.F. Wang and F.B. Meng, “Non-contact Fine Photoelectronic Measuring System for Screw Thread,” Control and Instruments in Chemical Industry, Vol. 32, No. 2, pp. 61-63, 2005.
    61. Q. B. Tong, Z. L. Ding, J. C. Chen, L. L. Ai and F. Yuan, “The Research of Screw Thread Parameter Measurement Based on Position Sensitive Detector and Laser,” Journal of Physics: Conference Series 48, pp.561–565, 2006.
    62. S.F. Wang, X. Zhao, S.F. Tong , Y.Q. Liu, P. Liu and J.T. Fan, “Development of screw thread detector based on laser probing displacement technique,” Chinese Journal of Scientific Instrument, Vol.28, No.4, 2007.
    63. H. Li, Y. An and W. Dong, “Non-contact optical fiber test device for inside screw threads,” CHINA MEASUREMENT & TESTING TECHNOLOGY, Vol.34, No.3, 2008.
    64. PMI Precision Monition Industries INC., Ballscrews / Linear guideway / Mono stage General Catalog.
    65. J.D. Foley, A.V. Dam, S.K. Feiner and J.F. Hughes, Computer graphics, Principles and Practices, 2nd Edition, Addision-Wesley publishing Company 1981.
    66. R.P. Paul, Robot Manipulators-Mathematics, Programming and control, MIT press, Cambridge, Mass 1982.
    67. C.H. Wu, “Robot Accuracy Analysis Based on Kinermatics,” IEEE Journal of Robotics and Automation, Vol RA-2/3, pp171-179, 1986.
    68. J. Denavit and R.S. Hartenberg, “A Kinematic Notation for Lower Pair Mechanisms Based on Matrices.” Transactions of the ASME Journal of applied mechanics, Vol. 77, pp.215-221, 1955.
    69. J.J. Uicker, “On the Dynamic Analysis of Spatial Linkages Using 4×4 Matrices,” Ph. D Dissertation, Northwestern University, Evanston, ILL., Aug. 1965.
    70. W. J. Smith, Modern Optical Engineering, Third Edition, SPIE Press. McGRAW-HILL, 2000.
    71. M. Born and E. Wolf, Principles of Optics, Pergamon, New York, 1985.
    72. Eugene Hecht, Optics, 4th ed, Addison-Wesley, New York, 2001
    73. Model LHRP-0501 of He-Ne laser Specifications, REO
    74. Model KBX046 of BK7 Precision Bi-Convex Lens Specifications, Newport
    75. Model S4349 of Photodiode Specifications, Hamamatsu
    76. Model 10BC16NP.4 of Laser Line Non-Polarizing Cube Beamsplitter Specifications, Newport
    77. Model 05RP12-24 of Multiple-Order Quartz Waveplates Specifications, Newport
    78. Model 10BC16PC.4 of Laser Line Polarizing Cube Beamsplitter Specifications, Newport
    79. Model DET 110 of High Speed Photodiode Specifications, Thorlabs
    80. Model NT43-211 of Reflective Ruled Diffraction Gratings Specifications, Edmund Optics
    81. Model IK220 of Interpolation and Counter Card Specifications, Heidenhain
    82. Model HP 5529A of Laser Interferometer Specifications, Agilent
    83. Model LEVELMETER 2000 of Minilevel NT Specifications, WYLER
    84. Model BZM28U of Precision Optical Flat Mirror Specifications, Onset
    85. Model 20LP-VIS-B of Precision Linear Polarizers Specifications, Newport
    86. Model SP 2000-D of Laser Interferometer Specifications, SIOS
    87. Model LDS-VECTOR of Optical Head for Electronic Autocollimator, LDS Series Specification, Newport
    88. Model KWS-251 of DVD Pickup Specifications, Sony
    89. Model LK-G150 of Triangulation Laser Specifications, Keyence
    90. Model BP04R of Right Angle Prism Specifications, Onset
    91. Model 08UMT-50 of Dual-Axis Stage Specifications, Unice
    92. Model 08MRX-3 of Rotary Stage Specifications, Unice
    93. Model Discovery II D-8 of Coordinate Measurement Machines Specifications, Sheffield
    94. 覺文郁、劉建宏、吳星助,“三自由度光學尺量测系統”,國立虎尾科技大學光電與材料科技研究所 碩士論文,民國95年。
    95. H. L. Huang, C. H. Liu, W. Y. Jywe, M. S. Wang and T. H. Fang, “Development of a Three-Degrees-of-Freedom Laser Linear Encoder for error measurement of a High Precision Stage,” Rev. Sci. Instrum., Vol. 78, Issue 6, Article 066103, pp.1-3, 2007.
    96. “大專學生參與專題研究計畫:新型干涉式三自由度量測系統”,行政院國家科學委員會補助大專學生參與專題研究計畫研究成果報告,96年3月
    97. H.L. Huang, C.H. Liu, W.Y. Jywe and M.S. Wang, “High resolution three-degrees-of-freedom motion errors measuring system for a single-axis linear moving platform,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 223, pp.107-114, 2009
    98. 覺文郁、林佳興、林政揚,“DVD讀頭多自由度量測系統”,國立虎尾科技大學自動化工程系 專題期末報告,民國97年。
    99. H.L. Huang, C.H. Liu, W.Y. Jywe, M.S. Wang, Y.R. Jeng, L.L. Duan and T.H. Hsu, “Development of a DVD pickup-based four-degree-of-freedom motion error measuring system for single-axis linear moving platform,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 224, pp.37-50, 2010
    100. “經濟部新產品開發計畫:高剛性軸向負載導螺桿”,經濟部工業局專案計畫全程結案報告,97年12月
    101. H.L. Huang, W.Y. Jywe, C.H. Liu, L.L. Duan and M.S. Wang, “Development of a novel laser-based measuring system for the thread profile of ballscrew,” Optics and Lasers in Engineering, Volume 48, Issue 10, pp.1012-1018, 2010 2010

    無法下載圖示 校內:2015-08-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE