簡易檢索 / 詳目顯示

研究生: 鍾鉉清
Zhong, Xuan-Qing
論文名稱: 透過鑽石型四波混頻實現 80% 通訊頻率轉換效率
80% Telecom Frequency Conversion Efficiency via Diamond-Type Four-Wave Mixing
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 108
中文關鍵詞: 通訊頻率轉換四波混頻冷銣原子鑽石型能階光纖量子通訊
外文關鍵詞: Telecom frequency conversion, Four-wave mixing, Cold Rubidium atoms, Diamond-type energy level, Fiber-based quantum communication
相關次數: 點閱:21下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文展示一套基於冷銣原子鑽石型能階結構的高效率通訊頻率轉換系統,成功實現將可見光(795 奈米)轉換至通訊波段(1367 奈米)。相較於傳統的雙Λ型系統,本研究著重於在轉換效率與傳輸損耗之間取得最佳平衡,最終於光學密度分別為 75 與 110 的條件下,達成 66% 與 80% 的轉換效率,超越原子系統中先前報導的所有成果。為優化四波混頻(FWM)條件,本研究系統性地探討了內部的 V 型與級聯型電磁誘發透明(EIT)譜特性。研究亦深入分析耦合光與驅動光的失諧量,以及光學密度對轉換效率的影響,進而建立完整的理論模型與參數優化流程。實驗結果在整體趨勢上與理論預測一致,展現本系統作為一個高效頻率轉換介面的可行性。雖然本研究使用的是相干光場,先前的理論研究已指出,在轉換過程中可高保真地保留量子態,突顯鑽石型原子四波混頻於長距離光纖量子通訊中的應用潛力。

    This thesis demonstrates a high-efficiency telecom frequency conversion system based on a diamond-type energy-level configuration in a cold rubidium atomic ensemble, achieving conversion from visible light (795 nm) to the telecommunication band (1367 nm). Compared to conventional double-Λ systems, this work emphasizes an optimal trade-off between conversion efficiency and transmission loss, ultimately achieving conversion efficiencies of 66% and 80% at optical densities of 75 and 110, respectively. These results surpass all previously reported values in atomic systems. A systematic investigation of the underlying V-type and cascade-type electromagnetically induced transparency (EIT) spectra is carried out to guide the optimization of the four-wave mixing (FWM) conditions. The effects of coupling and driving field detunings, as well as optical density, on the conversion efficiency are thoroughly analyzed, leading to the development of a complete theoretical model and parameter optimization procedure. The experimental results show good agreement with theoretical predictions in terms of overall trends, demonstrating the feasibility of this system as an efficient frequency conversion interface. Although this study is based on coherent light fields, previous theoretical work indicates that quantum states can be preserved with high fidelity during the conversion process, highlighting the potential of diamond-type atomic FWM for long-distance fiber-based quantum communication.

    中文摘要I Abstract II 誌謝 XIV 目錄XV 圖目錄XVIII 術語表與符號說明XXIII 第一章緒論1 1-1.研究背景與目的1 1-2.研究動機與貢獻2 第二章理論模型3 2-1.半古典模型4 2-1.1光學布洛赫方程式4 2-1.2馬克思威-薛丁格方程式6 2-1.3二能階系統分析9 2-2.電磁誘發透明(EIT)理論16 2-2.1 Λ型系統17 2-2.2級聯型(Cascade-Type)23 2-2.3 V型系統28 2-3.鑽石型四波混頻機制34 2-3.1穩態行為分析34 2-3.2暫態行為分析39 2-3.3最佳轉頻效率分析40 第三章實驗系統建構42 3-1.雷射穩頻系統42 3-1.1飽和吸收光譜技術42 3-1.2 1324nm的雷射穩頻系統設計43 3-2.冷原子系統45 3-2.1磁光陷阱(MOT)架設45 3-2.2暗區自發力光阱(DarkSPOT)48 3-3.光路架設49 3-3.1 Λ型EIT光路49 3-3.2鑽石形四波混頻光路51 3-4.能階選擇53 3-4.1 Λ型EIT系統能階53 3-4.2鑽石形四波混頻系統能階54 3-5.實驗時序設計56 3-5.1 Λ型EIT時序56 3-5.2級聯型EIT時序58 3-5.3鑽石形四波混頻時序61 第四章實驗結果與討論63 4-1. BrightMOT條件下之轉頻效率63 4-1.1最佳實驗參數分析63 4-2. DarkMOT條件下之轉頻效率69 4-2.1最佳實驗參數分析69 4-3.非最佳條件與理論比較76 第五章結論與未來展望77 5-1.研究成果總結77 5-2.研究限制與未來方向78 參考文獻79

    Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge university press, 2010.

    AGRadnaev, YODudin, RZhao, HHJen, SDJenkins, A Kuzmich, and TABKennedy.Aquantum memory with telecom-wavelength conversion. Nature Physics, 6(11):894-899, 2010.

    GJ Milburn. Photons as qubits. Physica Scripta, 2009(T137):014003, 2009.

    Egilberto Lombardi, Fabio Sciarrino, Sandu Popescu, and Francesco De Martini. Teleportation of a vacuum–one-photon qubit. Physical review letters, 88(7):070402, 2002.

    Nadav Yoran and Benni Reznik. Deterministic linear optics quantum computation with single photon qubits. Physical review letters, 91(3):037903, 2003.

    Stephen E Harris. Electromagnetically induced transparency. Physics today, 50(7):3642, 1997.

    Stephen E Harris, JE Field, and A Imamoğlu. Nonlinear optical processes using electromagnetically induced transparency. Physical Review Letters, 64(10):1107, 1990.

    Min Yan, Edward G Rickey, and Yifu Zhu. Electromagnetically induced transparency in cold rubidium atoms. Journal of the Optical Society of America B, 18(8):1057–1062, 2001.

    Thomas FKrauss. Whydoweneedslowlight? Nature photonics, 2(8):448–450, 2008.

    R Zhao, YO Dudin, SD Jenkins, CJ Campbell, DN Matsukevich, TAB Kennedy, and AKuzmich. Long-lived quantum memory. Nature Physics, 5(2):100–104, 2009.

    Dong-Sheng Ding, Zhi-Yuan Zhou, Bao-Sen Shi, Xu-Bo Zou, and Guang-Can Guo. Storage and retrieval of a light in telecomband in a cold atomic ensemble. arXiv preprint arXiv:1210.3963, 2012.

    Yong-qing Li and Min Xiao. Electromagnetically induced transparency in a three-level ?-type system in rubidium atoms. Physical Review A, 51(4):R2703, 1995.

    Heung-Ryoul Noh and Han Seb Moon. Transmittance signal in real ladder-type atoms. Physical Review A—Atomic, Molecular, and Optical Physics, 85(3):033817, 2012.

    Angelos Lazoudis, Teodora Kirova, EH Ahmed, Peng Qi, John Huennekens, and AM Lyyra. Electromagnetically induced transparency in an open v-type molecular system. Physical Review A—Atomic, Molecular, and Optical Physics, 83(6):063419, 2011.

    Clare R Higgins and Ifan G Hughes. Electromagnetically induced transparency in a v-system with 87rb vapour in the hyperfine paschen-back regime. Journal of Physics B: Atomic, Molecular and Optical Physics, 54(16):165403, 2021.

    H-J Briegel, Wolfgang Dür, Juan I Cirac, and Peter Zoller. Quantum repeaters: the role of imperfect local operations in quantum communication. Physical Review Letters, 81(26):5932, 1998.

    L-MDuan,Mikhail DLukin, J Ignacio Cirac, and Peter Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414(6862):413–418, 2001.

    Chin-Yao Cheng, Zi-Yu Liu, Pi-Sheng Hu, Tsai-Ni Wang, Chung-Yu Chien, Jia-Kang Lin, Jz-Yuan Juo, Jiun-Shiuan Shiu, Ite A Yu, Ying-Cheng Chen, et al. Efficient frequency conversion based on resonant four-wave mixing. Optics Letters, 46(3):681684, 2021.

    Prem Kumar. Quantum frequency conversion. Optics letters, 15(24):1476–1478, 1990.

    Gang Wang, Yan Xue, Jin-Hui Wu, Zhi-Hui Kang, Yun Jiang, Si-Sheng Liu, and Jin-Yue Gao. Efficient frequency conversion induced by quantum constructive interference. Optics letters, 35(22):3778–3780, 2010.

    Chin-Yuan Lee, Bo-Han Wu, Gang Wang, Yong-Fang Chen, Ying-Cheng Chen, and Ite A Yu. High conversion efficiency in resonant four-wave mixing processes. Optics Express, 24(2):1008–1016, 2016.

    RT Willis, FE Becerra, LA Orozco, and SL Rolston. Four-wave mixing in the diamond configuration in an atomic vapor. Physical Review A—Atomic, Molecular, and Optical Physics, 79(3):033814, 2009.

    Ravi Kumar, Vandna Gokhroo, Kieran Deasy, and Síle Nic Chormaic. Autler-townes splitting via frequency up-conversion at ultralow-power levels in cold rb 87 atoms using an optical nanofiber. Physical Review A, 91(5):053842, 2015.

    Po-Han Tseng, Ling-Chun Chen, Jiun-Shiuan Shiu, and Yong-Fan Chen. Quantum interface for telecom frequency conversion based on diamond-type atomic ensembles. Physical Review A, 109(4):043716, 2024.

    Jed A Rowland, Christopher Perrella, Rachel F Offer, Andre N Luiten, Ben M Sparkes, and Till J Weinhold. Characterization of near-infrared to telecom frequency conversion in a rubidium-filled hollow-core photonic-crystal fiber. Optics Express, 33(8):18076-18088, 2025.

    Chin-Yao Cheng, Zi-Yu Liu, Pi-Sheng Hu, Tsai-Ni Wang, Chung-Yu Chien, Jia-Kang Lin, Jz-Yuan Juo, Jiun-Shiuan Shiu, Ite A Yu, Ying-Cheng Chen, et al. Efficient frequency conversion based on resonant four-wave mixing. Optics Letters, 46(3):681-684, 2021.

    AGRadnaev, YODudin, RZhao, HHJen, SDJenkins, A Kuzmich, and TABKennedy. Aquantum memory with telecom-wavelength conversion. Nature Physics, 6(11):894-899, 2010.

    Wei-Hang Zhang, Ying-Hao Ye, Lei Zeng, Ming-Xin Dong, En-Ze Li, Jing-Yuan Peng, Yan Li, Dong-Sheng Ding, and Bao-Sen Shi. Telecom-wavelength conversion in a high optical depth cold atomic system. Optics Express, 31(5):8042–8048, 2023.

    Ling-Chun Chen, Meng-Yi Lin, Jiun-Shiuan Shiu, Xuan-Qing Zhong, Po-Han Tseng, and Yong-Fan Chen. High-efficiency telecom frequency conversion via a diamond-type atomic ensemble. Physical Review A, 112(1):013709, 2025.

    Chin-Yao Cheng. Quantum Frequency Conversion Based on Resonant-Type QuantumNonlinear Optics. Ph.d. thesis, NCKU, 2021.

    Tsai-Ni Wang. Quasi-phase-matching slow light propagation in efficient four-wave mixing media. Master’s thesis, NCKU, 2020.

    Yang-Lin Syue. Electromagnetically induced transparency in cascade transitions of cold rubidium atoms. Master’s thesis, NCKU, 2022.

    Ching-Hsuan Chen. Efficient telecom photon conversion based on double-cascade transition. Master’s thesis, NCKU, 2020.

    Yin-Cheng Lee. Study on slow light effect based on electromagnetically induced transparency in a-, v-, and cascade-type transitions. Master’s thesis, NCKU, 2023.

    Yu-Lin Tsai. Realization of telecom photon frequency conversion based on double cascade four-wave mixing in cold rubidium atoms. Master’s thesis, NCKU, 2023.

    Jia-Han He. Highly efficienttelecom frequency conversion realized through diamand-type four-wave mixing. Master’s thesis, NCKU, 2024.

    Wolfgang Ketterle, Kendall B Davis, Michael A Joffe, Alex Martin, and David E Pritchard. Highdensitiesofcoldatomsinadarkspontaneous-forceopticaltrap. Physical review letters, 70(15):2253, 1993.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE