簡易檢索 / 詳目顯示

研究生: 林忠逸
Lin, Chung-Yi
論文名稱: 全面性分析植物根部遭受金屬逆境時轉錄體表現之研究
Global transcriptome profiles of plant roots exposed to metal stress
指導教授: 黃浩仁
Huang, Hao-Jen
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 109
中文關鍵詞: 阿拉伯芥微陣列分析水稻根毛訊息傳遞轉錄體囊泡運送
外文關鍵詞: arabidopsis, cadmium, copper, microarray, rice, root hair, signaling pathway, transcriptome, vanadium, vesicle trafficking transport
相關次數: 點閱:248下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物生長環境中無論是遭遇長期低濃度或是大量高濃度重金屬或類金屬汙染時,經常性的會引發植物為適應生存而導致的形態改變。即使有些汙染的金屬對植物而言是屬於必需元素,植物體仍須改變其內部基因的表現以求達到具有適應金屬逆境的生理環境。然而,對於植物早期遭受到重金屬或是類金屬環境時所表現的訊息調控及細胞內的生理機制仍尚未有明顯的瞭解。因此此論文的研究目的是利用詳細且大規模分析基因體的方式,探討水稻與阿拉伯芥根部基因表現與遭逢金屬逆境時彼此間的相互關聯與反應,以求得知植體內基因彼此之間表現出的訊息途徑與可能的機制。
    當植物遭受重金屬或是類金屬逆境時常具有一些共同的逆境反應。不同金屬逆境間相似的形態改變反應出早期逆境時所發生的普遍存在的分子機制過程,如活性氧的產生或是植體內離子平衡的改變。本實驗利用微陣列(microarray)技術比較了水稻根部在遭受銅(5 µM)、鎘(25 µM)與釩(1000 µM)逆境時轉錄體基因的表現情形。結果顯示出水稻根部在遭受銅逆境時會改變細胞內囊泡運送基因的表現,並且脂肪酸代謝及細胞成份的生合成亦會受到影響。鎘處理主要是改變未折疊蛋白質的結合與硫同化作用相關基因的表現。而在釩所誘導的特殊轉錄體方面,較具顯著的則為NAC轉錄因子、類受體細胞質激酶VII (RLCK-VII)及多白胺酸性磷酸激酶VIII (LRR-VIII)等相關基因的改變。此外,基因表現情形中也顯示出銅與釩處理時會誘導茉莉酸(JA)生合成相關基因的表現,但生長素(Auxin)與離層酸(ABA)的生合成及所調控的訊息基因則以釩處理的水稻根部較為顯著。
    我們也發現以低濃度釩(25 µM)浸泡阿拉伯芥根部後發現會促使根尖部位根毛顯著變多並增加根毛的長度。為瞭解此現象是否受釩誘導的活性氧所調控,我們利用阿拉伯芥NADPH氧化酶突變株(rhd2/AtrbohC)以及NADPH氧化酶抑制劑diphenyleneiodonium chloride (DPI),證明釩誘導的活性氧參與此調控途徑。並且經由阿拉伯芥突變株的分析,我們也瞭解乙烯受器(ETR1)與轉錄因子ROOT HAIR DEFECTIVE 6 (RHD6)與釩誘導根毛形成息息相關。透過阿拉伯芥微陣列實驗分析發現微量釩會促使細胞壁形成,活性氧活性和訊息傳遞相關基因的改變。
    我的結果說明了水稻與阿拉伯芥根部形態上及訊息傳遞的反應是與金屬逆境具有相關性。此外,此研究更提供了我們新的知識,對於植物早期發生金屬逆境時的生理與分子層次具有更深一步的瞭解。

    Plants exposed to low, chronic or high, acute concentrations of heavy metal or metalloid can cause a broad range of morphogenic responses. Gene expression networks regulate suitable plasticity to adapt to metal stress even though some of them are considered essential metal for higher plants. However, signaling pathways and cellular mechanisms in the early stage response of the plant seedlings to heavy metal or metalloid are poorly understood. The aim of this study set out to investigate the possible signal networks and possible mechanisms using genome-wide assays at high spatiotemporal resolution to understand the processes that link gene expression and stress in the rice and Arabidopsis root.
    Common stress responses appear to exist between metal and metalloid. It is hypothesized that the similarities in the morphogenic responses induced by distinct metal stresses, reflect common molecular processes such as increased ROS production and altered ion homeostasis at the early stage. Comparison of the rice transcriptome expression between Cu (5 µM)-, Cd- (25 µM) and V (1000 µM)-array revealed that Cu specifically altered levels of genes involved in vesicle trafficking transport, fatty acid metabolism and cellular component biogenesis. Cd-regulated genes related to unfolded protein binding and sulfate assimilation. Among the V-specific responsive transcriptomes, the most predominant expressions were NAC (NAM, ATAF, CUC) transcription factor, receptor-like cytoplasmic kinase VII (RLCK-VII) and leucine-rich repeat kinase VIII (LRR-VIII). Furthermore, gene expression profiling revealed that jasmonic acid (JA) biosynthesis related genes were enriched by Cu and V treatment, but signaling and biosynthesis of auxin and abscisicacid (ABA) were significant in V-treated rice roots.
    In addition, during mild V treatment (25 µM), the Arabidopsis roots showed significantly increased Arabidopsis root hair density and length. A possible role of NADPH oxidase in V-induced alteration of root system architecture was examined by using NADPH oxidase mutant (rhd2/AtrbohC) and diphenyleneiodonium chloride (DPI), an inhibitor of NADPH oxidase. Ethylene receptor (ETR1) and RHD6 were also found to participate in inducing root hair formation. Exposure to V triggered changes in transcript levels of genes related to cell-wall formation, ROS activity, and signalling.
    These results reveal linkages between metal stress and morphogenic responses in rice and Arabidopsis root, and provide new insights into understanding the molecular basis of the early metal stress response in plants.

    中文摘要 I Abstract III Acknowledgements V Abbreviations VI CHAPTER 1: General Introduction 1 1.1 General responses to metal stress 2 1.2 Signals that mediate metal-induced morphogenic response4 1.3 Aims of this study 5 CHAPTER 2: Materials and Methods 7 2.1 Plant materials and heavy metal treatments 8 2.2 Root length determination 9 2.3 Detection of Reactive oxygen species in roots 9 2.4 Histochemical staining for lipid peroxidation 10 2.5 cyc1At::GUS staining 11 2.6 2, 3, 5-triphenyl-2H-tetrazolium chloride (TTC) assay 11 2.7 Inhibitor treatments 11 2.8 Purification of total RNA 12 2.9 Microarray preparation and data analysis 13 2.10 MapMan display 15 2.11 Semi-quantitative RT-PCR 15 2.12 Statistical analyses 16 CHAPTER 3: Comparison of Early Transcriptome Responses to Copper and Cadmium in Rice Roots 17 3.1 Abstract 18 3.2 Introduction 19 3.3 Results 3.3.1 Effect of metal stress on root growth of rice seedling 23 3.3.2 Genes that were commonly regulated by exposure to Cu and Cd in rice roots 23 3.3.3 Gene expression specifically in response to Cu and Cd 24 3.3.4 Comparison of Cu and Cd responses using MapMan 24 3.4 Discussion 26 List of tables and figures Table 3.1 Gene ontology analysis of 568 genes commonly regulated by Cu and Cd in rice 32 Table 3.2 Gene ontology/pathway terms for selected genes regulated ≥ 2-fold with 5 μM Cu and 25 μM Cd in rice roots 33 Table 3.3 Expression profiles of glutathione S-transferase-related genes with Cu and Cd treatment in rice roots 34 Table 3.4 Expression ratios for selected heat-shock protein and heat-shock factors significantly regulated with Cu and Cd stress in rice roots 35 Table 3.5 Vesicle-trafficking-related genes with changed expression with Cu and Cd treatment in rice roots 36 Table 3.6 Putative transporters involved in homeostasis of Cu and Cd stress in rice root 37 Table 3.7 Expression profiles of jasmonic-acid-related genes with Cu and Cd treatment in rice roots 38 Fig. 3.1 Root growth of rice seedlings with (a) Cu and (b) Cd treatment 39 Fig. 3.2 Transcription profiles of rice roots with 5 μM Cu and 25 μM Cd treatment by Venn diagram 40 Fig. 3.3 MapMan analysis of genes involved in (a) flavonoid metabolism and (b) transport, (c) large enzymes, and genes involved in (d) sulfate assimilation 41 Fig. 3.4 ROS production and lipid peroxidation detected in rice roots during Cu and Cd treatment 42 Fig. 3.5 Schematic representations of 2 different regulation pathways with Cu and Cd stress in rice roots 43 CHAPTER 4: Transcriptome analysis of phytohormone, transporters and signaling pathways in response to vanadium stress in rice roots 44 4.1 Abstract 45 4.2 Introduction 46 4.3 Results 4.3.1 Rice response to V 48 4.3.2 Global expression profiles of rice root in response to V 48 4.3.3 ROS-related genes induced by V 48 4.3.4 Hormone-signaling genes regulated by V 48 4.3.5 Transporter genes regulated by V 49 4.3.6 Transcription regulation and signal transduction under vanadium stress 49 4.3.7 Semi-quantitative RT-PCR analysis of selected genes 49 4.4 Discussion 51 List of tables and figures Table 4.1 Gene ontology analysis of biological processes and molecular functions of genes among 1,087 with expression upgregulated in response to vanadium 55 Table 4.2 Vanadium-responsive transcripts related to oxidative stress response and hormones 56 Table 4.3 Expression of oxidative stress- and hormone-related genes in response to vanadium stress in rice root 57 Table 4.4 Vanadium-responsive transcripts related to transporters. aFC (log2): log2-fold change 58 Fig. 4.1 The effect of vanadium (V) on rice root growth. (A) 6-day-old rice seedlings were treated with different concentrations of V for 3 days, and root length was measured 60 Fig. 4.2 MapMan analysis of genes involved in transport 61 Fig. 4.3 (A) Transcription factor and (B) IRAK families responding to V stress 62 Fig. 4.4 Semi-quantitative RT-PCR analysis of the mRNA levels of candidate transcripts induced by metal stress 63 Fig. 4.5 (A) Upregulated- and (B) downregulated- transporter families responding to V stress 65 Fig. 4.6 Comparison of (A) transporter, (B) transcription factor and (C) interleukin-1 receptor-associated kinase (IRAK) kinase families among genes upregulated specifically with vanadium and heavy metals 66 CHAPTER 5: Pathways involved in vanadium-induced root hair formation in Arabidopsis 68 5.1 Abstract 69 5.2 Introduction 70 5.3 Results 5.3.1 Specificity of root hair formation response to V exposure 73 5.3.2 Reactive oxygen species (ROS) production increased in V-treated roots 73 5.3.3 Role of NADPH oxidase in V-induced root hair elongation 73 5.3.4 V-induced root hair formation in mutant backgrounds 74 5.3.5 The mechanism of V-induced root hair formation 74 5.3.6 Identification of genes with changed expression on exposure to V 75 5.4 Discussion 76 List of tables and figures Table 5.1 Regulated transcripts in Arabidopsis roots treated with 25 µM V 80 Table 5.2 Groups of functionally root hair related genes that are differentially regulated in response to V exposure 81 Fig. 5.1 Promotion of Arabidopsis root hair formation by vanadium 82 Fig. 5.2 Changes in root length and root hair number of Arabidopsis rice after vanadium supply 83 Fig. 5.3 Cell viability and cell division in Arabidopsis root tips 84 Fig. 5.4 Effect of V on ROS accumulation in the roots of Arabidopsis 85 Fig. 5.5 Effect of NADPH oxidase on vanadium-induced root hair formation in Arabidopsis seedlings 86 Fig. 5.6 Effect of vanadium on root hair development of hormone mutant seedlings 87 Fig. 5.7 Effects of various signal transduction-inhibitors on V-induced root hair formation in Arabidopsis 88 Fig. 5.8 Expression analysis of the root hair cell specification genes, GLABRA2 (GL2) and WEREWOLF (WER), in roots from V-treated plants by RT-PCR 89 REFERENCES 90

    Ahsan N., Lee DG., Alam I., Kim PJ., Lee JJ., Ahn YO., Kwak SS., Lee IJ., Bahk JD., Kang KY., Renaut J., Komatsu S., Lee BH. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8: 3561-3576 (2008).
    Ahsan N., Renaut J., Komatsu S. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 9: 2602-2621 (2009).
    Anthony RG., Henriques R., Helfer A., Mészáros T., Rios G., Testerink C., Munnik T., Deák M., Koncz C., Bögre L. A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J. 23: 572-81 (2004).
    Atici Ö., Ağar G., Battal P. Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol. Plantarum 49: 215-222 (2005).
    Bae H., Herman E., Bailey B., Bae HJ., Sicher R. Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense. Physiol. Plantarum 125:114-126 (2005).
    Barna B., Adam AL., Király Z. Increased levels of cytokinin induced tolerance to necrotic diseases and various oxidative stress-causing agents in plants. Phyton. 37: 25-30 (1997).
    Béraud-Dufour S., Balch W. A journey through the exocytic pathway. J. Cell Sci. 115: 1779-1780 (2002).
    Bernhardt C., Lee MM., Gonzalez A., Zhang F., Lloyd A., Schiefelbein J. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 130: 6431-6439 (2003).
    Boominathan R., Doran PM. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol. Bioeng. 83:158-167 (2003).
    Borch K., Bouma TJ., Lynch JP., Brown KM. Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ. 22: 425-431 (1999).
    Broadley MR., White PJ., Hammond JP., Zelko I., Lux A. Zinc in plants. New Phytol. 173: 677-702 (2007).
    Brueggemann J., Weisshaar B., Sagasser M. A WD40-repeat gene from Malus × domestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1. Plant Cell Rep. 29: 285-294 (2010).
    Bruex A., Kainkaryam RM., Wieckowski Y., Kang YH., Bernhardt C., Xia Y., Zheng X., Wang JY., Lee MM., Benfey P., Woolf PJ., Schiefelbein J. A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet. 8: e1002446 (2012).
    Cantley LC., Cantley LG., Josephson L. A characterization of vanadate interactions with the (Na,K)-ATPase. Mechanistic and regulatory implications. J. Biol. Chem. 253: 7361-7368 (1978).
    Cantley LC., Josephson L., Warner R., Yanagisawa M., Lechene C., Guidotti G. Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. J. Biol. Chem. 252: 7421-7423 (1977).
    Castro RO., Trujillo MM., López Bucio J., Cervantes C., Dubrovsky J. Effects of dichromate on growth and root system architecture of Arabidopsis thaliana seedlings. Plant Sci. 172: 684-691 (2007).
    Cervantes C., Gutierrez-Corona F. Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol. Rev. 14: 121-137 (1994).
    Chakrabarty D., Trivedi PK., Misra P., Tiwari M., Shri M., Shukla D., Kumar S., Rai A., Pandey A., Nigam D., Dev Tripathi R., Tuli R. Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74: 688-702 (2009).
    Chamnongpol S., Willekens H., Moeder W., Langebartels C., Sandermann H., Van Montagu M., Inzé D., Van Camp W. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic plants. Proc. Natl. Acad. Sci. 95: 5818-5823 (1998).
    Chen ZX., Silva H., Klessing D. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262: 1883-1886 (1993).
    Cho HT., Cosgrove DJ. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14: 3237-3253 (2002).
    Chong YT., Gidda SK., Sanford C., Parkinson J., Mullen RT., Goring DR. Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytol. 185: 401-419 (2010).
    Chongkid B., Vachirapattama N., Jirakiattikul Y. Effects of vanadium on rice growth and vanadium accumulation in rice tissues. Kasetsart J. (Nat Sci) 41: 28-33 (2007).
    Cobbett C, Goldsbrough P. PHYTOCHELATINS AND METALLOTHIONEINS: Roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 53: 159-182 (2002).
    Cobbett C. Heavy metals and plants – model systems and hyperaccumulators. New Phytol. 159: 289-293 (2003).
    Cobbett CS. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant Biol. 3: 211-216 (2000a).
    Cobbett CS. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123: 825-832 (2000b).
    Crans DC. Interaction of vanadates with biogenic ligands. Met. Ions. Biol. Syst. 31: 147-209 (1995).
    Dardick C., Chen J., Richter T., Ouyang S., Ronald P. The rice kinase database. A phylogenomic database for the rice kinome. Plant Physiol. 143: 579-586 (2007).
    Dolan L. Positional information and mobile transcriptional regulators determine cell pattern in the Arabidopsis root epidermis. J. Exp. Bot. 57: 51-54 (2006).
    Drążkiewicz M., Skórzyńska-Polit E., Krupa Z. Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. BioMetals 17: 379-387 (2004).
    Dunand C., Crevecoeur M., Penel C. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol. 174: 332-341 (2007).
    Elberg G., Li J., Shechter Y. Vanadium activates or inhibits receptor and non-receptor protein tyrosine kinases in cell-free experiments, depending on its oxidation state. Possible role of endogenous vanadium in controlling cellular protein tyrosine kinase activity. J. Biol. Chem. 269: 9521-9527 (1994).
    Elstner EF., Wagner GA., Schutz W. Activated oxygen in green plants in relation to stress situations. Curr. Top Plant Biochem. Physiol. 7: 159-187 (1988).
    Farinati S., DalCorso G., Bona E.,Corbella M., Lampis S., Cecconi D., Polati R., Berta G., Vallini G., Furini A. Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics 9: 4837-4850 (2009).
    Foreman J., Demidchik V., Bothwell JHF., Mylona P., Miedema H., Torres MA., Linstead P., Costa S., Brownlee C., Jones JDG., Davies JM., Dolan L. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442-446 (2003).
    Foy CD., Chaney RL., White MC. Physiology of metal toxicity in plants. Annu. Rev. Plant Physiol. 29: 511-566 (1978).
    Foyer CH., Noctor G. Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 28: 1056-1071 (2005).
    Gao F., Xiong A., Peng R., Jin X., Xu J., Zhu B., Chen J., Yao Q. OsNAC52 , a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell Tiss. Org. 100: 255-262 (2010).
    Gao G., Zhong Y., Guo A., Zhu Q., Tang W., Zheng W., Gu X., Wei L., Luo J. DRTF: a database of rice transcription factors. Bioinformatics 22: 1286-1287 (2006).
    Gaxiola RA., Fink GR., Hirschi KD. Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiol. 129: 967-973 (2002).
    Gazarian IG., Lagrimini LM., Mellon FA., Naldrett MJ., Ashby GA., Thorneley RN. Identification of the skatolyl hydroperoxide and its role in the peroxidase-catalyzed oxidation of indol-3-yl acetic acid. Biochem. J. 333: 223-232 (1998).
    Grierson C., Schiefelbein J. Root hairs. In The Arabidopsis Book (Somerville, C.R. and Meyerowitz, E.M., eds). Rockville, MD: American Society of Plant Biologists, pp 1-22 (2002).
    Guerinot ML. The ZIP family of metal transporters. Biochimica et Biophysica Acta 1465: 190-198 (2000).
    Haag-Kerwer A., Schäfer HJ., Heiss S., Walter C., Rausch T. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J. Exp. Bot. 50: 1827-1835 (1999).
    Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53: 1-11 (2002).
    Herbette S., Taconnat L., Hugouvieux V., Piette L., Magniette MLM., Cuine S., Auroy P., Richaud P., Forestier C., Bourguignon J., Renou JP., Vavasseur A., Leonhardt N. Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88: 1751-1765 (2006).
    Himelblau E., Amasino RM. Delivering copper within plant cells. Curr. Opin. Plant Biol. 3: 205-210 (2000).
    Huang GY., Wang YS., Sun CC., Dong JD., Sun ZX. The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Oceanol. Hydrobiol. St. 39: 11-25 (2010).
    Ishida T., Kurata T., Okada K., Wada T. A genetic regulatory network in the development of trichomes and root hairs. Annu. Rev. Plant Biol. 59: 365-386 (2008).
    Jain M., Khurana JP. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J. 276: 3148-3162 (2009).
    Jenkitkasemwong S., Wang CY., Mackenzie B., Knutson M. Physiologic implications of metal-ion transport by ZIP14 and ZIP8. Biometals 25: 643-655 (2010).
    Jiang Y., Deyholos M. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol. 6: 25 (2006).
    Jin YH., Clark AB., Slebos RJC., Al-Refai H., Taylor JA., Kunkel TA., Resnick MA., Gordenin DA. Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat. Genet. 34: 326-329 (2003).
    Jonak C., Nakagami H., Hirt H. Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol. 136: 3276-3283 (2004).
    Jozefczak M., Remans T., Vangronsveld J., Cuypers A. Glutathione is a key player in metal-induced oxidative stress defenses. Int. J. Mol. Sci. 13: 3145-3175 (2012).
    Kabata-Pendias A., Pendis, H. Biogeochemistry of Trace Elements. PWN, Warszawa, pp 126-137 (1993).
    Kampranis SC., Damianova R., Atallah M., Toby G., Kondi G., Tsichlis PN. Makris AM. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J. Biol. Chem. 275: 29207-29216 (2000).
    Kang YH., Kirik V., Hulskamp M., Nam KH., Hagely K., Lee MM., Schiefelbein J. The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis. Plant Cell 21: 1080-1094 (2009).
    Kapulnik Y., Resnick N., Mayzlish-Gati E., Kaplan Y., Wininger S., Hershenhorn J., Koltai H. Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. J. Exp. Bot. 62: 2915-2924 (2011).
    Kee Y., Yoo JS., Hazuka CD., Peterson KE., Hsu SC., Scheller RH. Subunit structure of the mammalian exocyst complex. PNAS 94: 14438-14443 (1997).
    Keinänen SI., Hassinen VH., Kärenlampi SO., Tervahauta AI. Isolation of genes up-regulated by copper in a copper-tolerant birch (Betula pendula) clone. Tree Physiol. 27: 1243-1252 (2007).
    Kim D., Gustin JL., Lahner B., Persans MW., Baek D., Yun, DJ., Salt DE. The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J. 39: 237-251 (2004).
    Kim DY., Bovet L., Maeshima M., Martinoia E., Lee Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 50: 207-218 (2007).
    Kirik V., Simon M., Huelskamp M., Schiefelbein J. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev. Biol. 268: 506-513 (2004).
    Koltai H. Strigolactones are regulators of root development. New Phytol. 190: 545-549 (2011).
    Koshino-Kimura Y., Wada T., Tachibana T., Tsugeki R., Ishiguro S., Okada K. Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis. Plant Cell Physiol. 46: 817-826 (2005).
    Kovtun Y., Chiu WL., Tena G., Sheen J. Functional analysis of oxidative stress-activated mitogen- activated protein kinase cascade in plants. PNAS. 97: 2940-2945 (2000).
    Krejsa CM., Nadler SG., Esselstyn JM., Kavanagh TJ., Ledbetter JA., Schieven GL. Role of oxidative stress in the action of vanadium phosphotyrosine phosphatase inhibitors. Redox independent activation of NF-kappa B. J. Biol. Chem. 272: 11541-11549 (1997).
    Kurepa J., Hérouart D., van Montagu M., Inzé D. Differential expression of CuZn- and Fe-superoxide dismutase genes of tobacco during development, oxidative stress, and hormonal treatments. Plant Cell Physiol. 38: 463-470 (1997).
    Kwak SH., Schiefelbein J. The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis. Dev. Biol. 302: 118-131 (2007).
    Larsson EH., Bornman JF., Asp H. Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J. Exp. Bot. 49: 1031-1039 (1998).
    Le Martret B., Poage M., Shiel K., Nugent GD., Dix PJ. Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol. J. 9: 661-673 (2011).
    Lee S., Kim YY., Lee Y., An G. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol. 145: 831-842 (2007).
    Lehti-Shiu MD., Zou C., Hanada K., Shiu SH. Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol. 150: 12-26 (2009).
    Leshem Y., Melamed-Book N., Cagnac O., Ronen G., Nishri Y., Solomon M., Cohen G., Levine A. Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. PNAS 103: 18008-18013 (2006).
    Li B., Lin J., Mi S., Lin J. Arsenic resistance operon structure in Leptospirillum ferriphilum and proteomic response to arsenic stress. Bioresource Technol. 101: 9811-9814 (2010).
    Li S., van Os GMA., Ren S., Yu D., Ketelaar T., Emons AMC., Liu CM. Expression and functional analyses of EXO70 Genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis. Plant Physiol. 154: 1819-1830 (2010).
    Libault M., Brechenmacher L., Cheng J., Xu D., Stacey G. Root hair systems biology. Trends Plant Sci. 15: 641-650 (2010).
    Lin CW., Lin CY., Chang CC., Lee RH., Tsai TM., Chen PY., Chi WC., Huang HJ. Early signalling pathways in rice roots under vanadate stress. Plant Physiol. Bioch. 47: 369-376 (2009).
    Lin YF., Aarts MG. The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol. Life Sci. 69: 3187-206 (2012).
    Lombardo MC., Graziano M., Polacco JC., Lamattina L. Nitric oxide functions as a positive regulator of root hair development. Plant Signal Behav. 1: 28-33 (2006).
    López-Bucio J., Cruz-Ramı́rez A., Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6: 280-287 (2003).
    López-Maury L., Marguerat S., Bähler J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat. Rev. Genet. 9: 583-593 (2008).
    Ma S., Bohnert HJ. Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biology 8: R49 (2007).
    Ma Z., Bielenberg DG., Brown KM., Lynch JP. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ. 24: 459-467 (2001).
    Maksymiec W. Signaling responses in plants to heavy metal stress. Acta Physiol. Plant. 29: 177-187 (2007).
    Maksymiec W., Wianowska D., Dawidowicz AL., Radkiewicz S., Mardarowicz M., Krupa Z. The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J. Plant Physiol. 162: 1338-1346 (2005).
    Masucci JD., Schiefelbein JW. Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8: 1505-1517 (1996).
    Masucci JD., Schiefelbein JW. The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin- and ethylene-associated process. Plant Physiol. 106: 1335-1346 (1994).
    Mendoza-Cózatl D., Loza-Tavera H., Hernández-Navarro A., Moreno-Sánchez R. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev. 29: 653-671 (2005).
    Misson J., Raghothama KG., Jain A., Jouhet J., Block MA., Bligny R., Ortet P., Creff A., Somerville S., Rolland N., Doumas P., Nacry P., Herrerra-Estrella L., Nussaume L., Thibaud MC. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. PNAS 102: 11934-11939 (2005).
    Moulis JM. Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. BioMetals 23: 877-896 (2010).
    Mudgil Y., Shiu SH., Stone SL., Salt JN., Goring DR. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-Box E3 ubiquitin ligase family. Plant Physiol. 134: 59-66 (2004).
    Müller M., Schmidt W. Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiol. 134: 409-419 (2004).
    Nakagami H., Pitzschke A., Hirt H. Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci. 10: 339-346 (2005).
    Nakamoto H., Vígh L. The small heat shock proteins and their clients. Cell Mol. Life Sci. 64: 294-306 (2007).
    Nakashima K., Tran LSP., Van Nguyen D., Fujita M., Maruyama K., Todaka D., Ito Y., Hayashi N., Shinozaki K., Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51: 617-630 (2007).
    Nechay BR. Mechanisms of action of vanadium. Annu. Rev. Pharmacol. Toxicol. 24: 501-524 (1984).
    Noctor G., Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 249-279(1998).
    Norton GJ., Lou-Hing DE., Meharg AA., Price AH. Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis. J. Exp. Bot. 59: 2267-2276 (2008).
    Ogawa I., Nakanishi H., Mori S., Nishizawa N. Time course analysis of gene regulation under cadmium stress in rice. Plant Soil 325: 97-108 (2009).
    Ohashi Y., Oka A., Rodrigues-Pousada R., Possenti M., Ruberti I., Morelli G., Aoyama T. Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation. Science 300: 1427-1430 (2003).
    Olness A., Gesch R., Forcella F., Archer D., Rinke J. Importance of vanadium and nutrient ionic ratios on the development of hydroponically grown cuphea. Ind. Crop Prod. 21: 165-171 (2005).
    Orman B., Ligeza A., Szarejko I., Maluszynski M. EST-based approach for dissecting root architecture in barley using mutant traits of other species. In: Costa de Oliveira A, Varshney RK, eds. Root Genomics: Springer Berlin Heidelberg, pp 11-72 (2011).
    Ouyang S., Zhu W., Hamilton J., Lin H., Campbell M., Childs K., Thibaud-Nissen F., Malek RL., Lee Y., Zheng L., Orvis J., Haas B., Wortman J., Buell CR. The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res. 35: D883-D887 (2007).
    Ouyang Y., Huang X., Lu Z., Yao J. Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice. BMC Genomics 13: 100 (2012).
    Pagani MA., Tomas M., Carrillo J., Bofill R., Capdevila M., Atrian S., Andreo CS. The response of the different soybean metallothionein isoforms to cadmium intoxication. J. Inorg. Biochem. 117: 306-315 (2012).
    Park J., Song WY., Ko D., Eom Y., Hansen TH., Schiller M., Lee TG., Martinoia E. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J. 69: 278-288 (2012).
    Pasternak T., Potters G., Caubergs R., Jansen MAK. Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. J. Exp. Bot. 56: 1991-2001 (2005a).
    Pasternak T., Rudas V., Potters G., Jansen MAK. Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environ. Exp. Bot. 53: 299-314 (2005b).
    Pena LB., Zawoznik MS., Tomaro ML., Gallego SM. Heavy metals effects on proteolytic system in sunflower leaves. Chemosphere 72: 741-746 (2008).
    Poage M., Le Martret B., Jansen M., Nugent G., Dix P. Modification of reactive oxygen species scavenging capacity of chloroplasts through plastid transformation. Plant Mol. Biol. 76: 371-384 (2011).
    Pompella A., Maellaro E., Casini AF., Comporti M. Histochemical detection of lipid peroxidation in the liver of bromobenzene-poisoned mice. Am. J. Pathol. 129: 295-301 (1987).
    Potters G., Pasternak TP., Guisez Y., Palme KJ., Jansen MAK. Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci. 12: 98-105 (2007).
    Puranik S., Sahu PP., Srivastava PS., Prasad M. NAC proteins: regulation and role in stress tolerance. Trends Plant Sci. 17: 369-381 (2012).
    Reinhardt D., Pesce ER., Stieger P., Mandel T., Baltensperger K., Bennett M., Traas J., Friml J., Kuhlemeier C. Regulation of phyllotaxis by polar auxin transport. Nature 426: 255-260 (2003).
    Ren Q., Chen K., Paulsen IT. TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res. 35: D274-D279 (2007).
    Romero-Puertas MC., RodrÍGuez-Serrano M., Corpas, FJ., GÓMez M., Del RÍO LA., Sandalio LM. Cadmium-induced subcellular accumulation of O2•− and H2O2 in pea leaves. Plant Cell Environ. 27: 1122-1134 (2004).
    Ryu KH., Kang YH., Park YH., Hwang I., Schiefelbein J., Lee MM. The WEREWOLF MYB protein directly regulates CAPRICE transcription during cell fate specification in the Arabidopsis root epidermis. Development 132: 4765-4775 (2005).
    Šamaj J., Ovecka M., Hlavacka A., Lecourieux F., Meskiene I., Lichtscheidl I., Lenart P., Salaj J., Volkmann D., Bögre L., Baluška F., Hirt H. Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J. 21: 3296-3306 (2002).
    Sánchez-Fernández R., Fricker M., Corben LB., White NS., Sheard N., Leaver CJ., Van Montagu M., Inzé D., May MJ. Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. PNAS. 94: 2745-2750 (1997).
    Sasaki-Sekimoto Y., Taki N., Obayashi T., Aono M., Matsumoto F., Sakurai N., Suzuki H., Hirai MY., Noji M., Saito K., Masuda T., Takamiya K-i., Shibata D., Ohta H. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J. 44: 653-668 (2005).
    Schellmann S., Schnittger A., Kirik V., Wada T., Okada K., Beermann A., Thumfahrt J., Jurgens G., Hulskamp M. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J. 21: 5036-5046 (2002).
    Schiefelbein J. Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr Opin Plant Biol 6: 74-78 (2003).
    Schiefelbein JW., Shipley A., Rowse P. Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana. Planta 187: 455-459 (1992).
    Schiefelbein JW., Somerville C. Genetic control of root hair development in Arabidopsis thaliana. Plant Cell 2: 235-243 (1990).
    Schmidt W., Schikora A. Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development. Plant Physiol. 125: 2078-2084 (2001).
    Serra M., Sabbioni E., Marchesini A., Pintar A., Valoti M. Vanadate as an inhibitor of plant and mammalian peroxidases. Biol. Trace Elem. Res. 23: 151-164 (1989).
    Seth CS., Remans T., Keunen E., Jozefczak M., Gielen H., Opdenakker K., Weyens N., Vangronsveld J., Cuypers A. Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ. 35: 334-346 (2012).
    Sharma SS., Dietz KJ. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 14: 43-50 (2009).
    Shin R., Berg RH., Schachtman DP. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 46: 1350-1357 (2005).
    Shin R., Schachtman DP. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. P NAS 101: 8827-8832 (2004).
    Singh B. Effect of vanadium on the growth, yield and chemical composition of maize (Zea Mays L.), Plant Soil. 34: 209-213 (1971).
    Singh B., Wort DJ. Effect of vanadium on growth, chemical composition, and metabolic processes of mature sugar beet (Beta vulgaris L.). Plants, Plant Physiol. 44: 1321-1327 (1969).
    Singh B., Wort DJ. Effect of vanadium on growth, chemical composition, and metabolic processes of mature sugar beet (Beta vulgaris L.) plants. Plant Physiol. 44: 1321-1327 (1969).
    Singh BB. Effect of vanadium on the growth, yield and chemical composition of maize (Zea mays L). Plant Soil 34: 209-213 (1971).
    Skórzyńska-Polit E., Pawlikowska-Pawlęga B., Szczuka E., Drążkiewicz M., Krupa Z. The Activity and localization of lipoxygenases in Arabidopsis thaliana under cadmium and copper stresses. Plant Growth Regul. 48: 29-39 (2006).
    Smertenko AP., Chang HY., Wagner V., Kaloriti D., Fenyk S., Sonobe S., Lloyd C., Hauser MT., Hussey PJ. The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16: 2035-2047 (2004).
    Smiri M., El Ghoul J. Role for plant thioredoxin in Cd2+ chelation. Int. J. Vegetable. Sci. 18: 93-105 (2011).
    Smith RD., Wilson JE., Walker JC., Baskin TI. Protein phosphatase inhibitors block root hair development and alter cell shape in Arabidopsis roots. Planta 194: 516-524 (1994).
    Somasundaram R., Muthuchelian K., Murugesan S. Inhibition of chlorophyll, protein, photosynthesis, nitrate reductase and nitrate content by vanadium in Oryza sativa L. J. Environ. Biol. 15: 41-48 (1994).
    Song WY., Park J., Mendoza-Cózatl DG., Suter-Grotemeyer M., Shim D., Hörtensteiner S., Geisler M., Weder B., Rea PA., Rentsch D., Schroeder JI., Lee Y., Martinoia E. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters, PNAS 107: 21187-21192 (2010).
    Sorkin A. The endocytosis machinery. J. Cell Sci. 113: 4375-4376 (2000).
    Strader LC., Chen GL., Bartel B. Ethylene directs auxin to control root cell expansion. Plant J. 64: 874-884 (2010).
    Sudo E., Itouga M., Yoshida-Hatanaka K., Ono Y., Sakakibara H. Gene expression and sensitivity in response to copper stress in rice leaves. J. Exp. Bot .59: 3465-3474 (2008).
    Sundaram S., Rathinasabapathi B., Ma LQ., Rosen BP. An Arsenate-activated Glutaredoxin from the Arsenic Hyperaccumulator Fern Pteris vittata L. Regulates Intracellular Arsenite. J. Biol. Chem. 283: 6095-6101 (2008).
    Takeda S., Gapper C., Kaya H., Bell E., Kuchitsu K., Dolan L. Local positive feedback regulation determines cell shape in root hair cells. Science 319: 1241-1244 (2008).
    Takehisa H., Sato Y., Igarashi M., Abiko T., Antonio BA., Kamatsuki K., Minami H., Namiki N., Inukai Y., Nakazono M., Nagamura Y. Genome-wide transcriptome dissection of the rice root system: implications for developmental and physiological functions. Plant J. 69: 126-140 (2012).
    Tamari G., Borochov A., Atzorn R., Weiss D. Methyl jasmonate induces pigmentation and flavonoid gene expression in petunia corollas: A possible role in wound response. Physiol. Plantarum 94: 45-50 (1995).
    TerBush DR., Maurice T., Roth D., Novick P. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15: 6483-6494 (1996).
    Thimm O., Bläsing O., Gibon Y., Nagel A., Meyer S., Krüger P., Selbig J., Müller LA., Rhee SY., Stitt M. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37: 914-939 (2004).
    Vachirapatama N., Dicinoski GW., Townsend AT., Haddad PR. Determination of vanadium as 4-(2-pyridylazo)resorcinol–hydrogen peroxide ternary complexes by ion-interaction reversed-phase liquid chromatography. J. Chromatogr. A. 956: 221-227 (2002).
    Vachirapatama N., Jirakiattikul Y. Effect of vanadium on growth of Chinese green mustard (Brassica campestris ssp. chinensis var. parachinensis) under substrate culture. Songklanakarin J. Sci. Technol. 30: 427-431 (2008).
    Vachirapatama N., Jirakiattikul Y., Dicinoski G., Townsend AT., Haddad PR. Effect of vanadium on plant growth and its accumulation in plant tissues. Songklanakarin J. Sci. Technol. 33: 255-261 (2011).
    Velasquez SM., Ricardi MM., Dorosz JG., Fernandez PV., Nadra AD., Pol-Fachin L., Egelund J., Gille S., Harholt J., Ciancia M., Verli H., Pauly M., Bacic A., Olsen CE., Ulvskov P., Petersen BL., Somerville C., Iusem ND., Estevez JM. O-glycosylated cell wall proteins are essential in root hair growth. Science 332: 1401-1403 (2011).
    Velkov VV. New Insights into the molecular mechanisms of evolution: Stress increases genetic diversity. Molecular Biology 36: 209-215 (2002).
    Verrier PJ., Bird D., Burla B., Dassa E., Forestier C., Geisler M., Klein M., Kolukisaoglu Ü., Lee Y., Martinoia E., Murphy A., Rea PA., Samuels L., Schulz B., Spalding EP., Yazaki K., Theodoulou FL. Plant ABC proteins – a unified nomenclature and updated inventory. Trends Plant Sci. 13: 151-159 (2008).
    Villiers F., Ducruix C., Hugouvieux V., Jarno N., Ezan E., Garin J., Junot C., Bourguignon J. Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11: 1650-1663 (2011).
    Walley JW., Dehesh K. Molecular mechanisms regulating rapid stress signaling networks in Arabidopsis. J. Integr. Plant Biol. 4: 354-359 (2010)
    Wang H., Hao J., Chen X., Hao Z., Wang X., Lou Y., Peng Y., Guo Z. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol. Biol. 65: 799-815 (2007).
    Wang J., Liu Z. Effect of vanadium on the growth of soybean seedlings. Plant Soil 216: 47-51 (1999).
    Weber M., Trampczynska A., Clemens S. Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ. 29: 950-963 (2006).
    Williams LE., Pittman JK., Hall JL. Emerging mechanisms for heavy metal transport in plants. Biochimica et Biophysica Acta 1465: 104-126 (2000).
    Wubben MJE., Su H., Rodermel SR., Baum TJ. Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction in Arabidopsis thaliana. Mol. Plant Microbe Interact. 14: 1206-1212 (2001).
    Wymer CL., Bibikova TN., Gilroy S. Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant J. 12: 427-439 (1997).
    Wysocki R., Tamás MJ. How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev. 34: 925-951 (2010).
    Yang TJ., Perry PJ., Ciani S., Pandian S., Schmidt W. Manganese deficiency alters the patterning and development of root hairs in Arabidopsis. J. Exp. Bot. 59: 3453-3464 (2008).
    Yeh CM., Chien PS., Huang HJ. Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J. Exp. Bot. 58: 659-671 (2007)
    Yruela I. Copper in plants. Braz. J. Plant Physiol. 17: 145-156 (2005).
    Yuan L., Yang S., Liu B., Zhang M., Wu K. Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep. 31:.67-79 (2012).
    Yuan M., Li X., Xiao J., Wang S. Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC Plant Biol. 11: 69 (2011).
    Zeng LR., Qu S., Bordeos A., Yang C., Baraoidan M., Yan H., Xie Q., Nahm BH., Leung H., Wang GL. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-Box/Armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16: 2795-2808 (2004).
    Zhang YJ., Lynch JP., Brown KM. Ethylene and phosphorus availability have interacting yet distinct effects on root hair development. J. Exp. Bot. 54: 2351-2361 (2003).
    Zhang Z., Huang C., Li J., Leonard SS., Lanciotti R., Butterworth L., Shi X. Vanadate-induced cell growth regulation and the role of reactive oxygen species. Arch. Biochem. Biophys. 392: 311-320 (2001).
    Zhao CR., Ikka T., Sawaki Y., Kobayashi Y., Suzuki Y., Hibino T., Sato S., Sakurai N., Shibata D., Koyama H. Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana. BMC Plant Biol. 9: 32 (2009).
    Zhu YL., Pilon-Smits EAH., Jouanin L., Terry N. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119: 73-80 (1999).
    Ziemacki G., Viviano G., Merli F. Heavy metals: sources and environmental presence. Ann. Ist. Super. Sanità 25: 531-536 (1989).

    下載圖示 校內:2018-05-13公開
    校外:2018-05-13公開
    QR CODE