| 研究生: |
嚴元宏 Yen, Yun-Hong |
|---|---|
| 論文名稱: |
餵食半乳糖大白鼠水晶體之蛋白質體研究 Proteomic Study of Galactosemic Rat Lenses |
| 指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 水晶體蛋白 、半乳糖 、蛋白體質學 、二維電泳 |
| 外文關鍵詞: | lens crystallins, galactosemic, proteomic, 2-D electrophoresis |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是利用一維、二維電泳技術來分析餵食半乳糖大白鼠眼球之變化。出生四週的雌性大白鼠餵食50﹪半乳糖混合飼料持續六週,每二週取出眼球作為研究,經二週的餵食,眼球皮質外圍從外觀可即看出呈絲狀的混濁,隨著餵食時間的增加,這絲狀的混濁延伸至核內,六週後,眼球已變成完全不透明。經由膠體過濾層析、一維、二維電泳分析可發現: i).出現一個新的蛋白質點t1,經鑑定其為轉譯後修飾的aA水晶體蛋白,二個隨餵食半乳糖時間增加而增加的aB蛋白質點a2、a3;還有截短(truncation)修飾後的a水晶體蛋白。 ii). 餵食四週後高分子量的水晶體蛋白聚集開始增加。iii).餵食時間的加長,bB1及二個修飾後的bB3、bB4水晶體蛋白隨之減少;而一個修飾後的bB2水晶體蛋白卻反而增加。 iv). 三個不同修飾型式的gS水晶體蛋白隨餵食半乳糖時間增加而消失,但其他同家族的g水晶體蛋白卻並未減少,這也說明了gS水晶體蛋白與其他g水晶體蛋白比較而言對環境的改變更為敏感。本研究顯示出餵食半乳糖可使水晶體蛋白發生變異修飾,導致非水溶性的沈澱,因而在短時間內造成大白鼠白內障的生成。
This study was to use one and two dimensional gel electrophoresis to investigate the changes of galactosemic rat lenses. Four weeks old female rats were fed with 50% galactose for six weeks. The rat lenses were taken every two weeks for study. It was found that after two-week feeding, the out skirt of cortex was observed silk-like turbidity. With the increase of feeding time, the silk-like turbidity enlarged toward nucleus. It was become totally opaque after five weeks. During the development of galactose-induced cataract gel filtration chromatographic, one- and two-dimensional gel electrophoretic analyses revealed that i). A new protein spot (t1) was observed, which was identified being a post-translational modified αA-crystallin. Two modified spots of a2 and a3 of αB-crystallin were observed, which intensity increased with the increase of galactosemic time. Truncation of α-crystallin was also observed. ii). High molecular weight aggregate from galactosemic lenses increased for the first four weeks, then decreased as nuclear opalescence was found; iii). For β-crystallin, it was found that the spot intensity of βB1 and two modified βB3 and βA4 decreased with the increase of galactosemic time; while the spot intensity of modified βB2 increased with the increase of galactosemic time. iv). For γ-crystallin, three γS-crystallin spots were observed that their spot intensity was decreased with the increase of galactosemic time; while no other γ-crystallins showed decreasing intensity. These results indicates that compared to other types of γ-crystallins, γS-crystallins are more sensitive to environmental changes. This proteomic study has shown that galactosemic rats could be resulted in the formation of cataract in short time, which is caused by the modifications and truncations of crystallins, then leading to the precipitation.
1.Frank W.Newell 原著 ,林和鳴 譯著:眼科學精華,環球書社 (1998)
2.Bloemendal H. Molecular and cellular biology of the eye lens .John Wiley and Sons, New York ,pp 469 (1981)
3.Brown,N.A.P. Sparrow,J.M. and Bron,A.J “Central compaction in the process of lens growth as indicated by lamellar cataract.” British J. Ophthalmol.72,pp 538-544 (1988)
4.Taylor,V.L,Al-Ghoul,K.J,Lane,C.W,Davis,V.A,Kuszak,J.R.and Costello,M.J. “Morphology of the normal human lens .” Invest Ophthalmol Vis Sc;37,pp 1396-1410(1996)
5.Al-Ghoul,K.J and Costello ,M.J. ”Light microscopic variation of fiber cell size , shape and ordering in the equatorial plane of bovine and human lenses .” Mol Vis ;3,pp2 (1997)
6.Kalsi M, Heron G and Charman Wn : Chandes in the static accommodation response with age . Ophthalmic Physiol Opt ;21,pp77-84 (2001)
7.Delaye M and Tardieu A .:Short-range order of crystalline proteins accounts for eyes lens transparency. Nature; 302,415-417 (1983)
8.Carolyn Chambers$ and Paul Russell ,Deletion Mutation in an Eye Lens –Crystallin ,THE JOURNAL OF BIOLOCICAL CHEMISTRY Val. 266, No. 11, Issue of April 15, pp. 6742-6746,(1991)
9.Zhixiang Maa, Stacy R. A. Hansona, Kirsten J. Lampib, Larry L. David, Smitha and Jean B. Smitha,* Age-Related Changes in Human Lens Crystallins Identified by HPLC and Mass Spectrometry Exp. Eye Res. (1998) 67, 21-30
10.Piatigorsky, J. Differentiation 19, 134-153 (1981)
11.Piatigorsky, J. Cell 38, 620-621 (1984)
12.Lubsen, N. H., Aarts, H. J. M. & Schoenmakers, J. G. G. Prog. Biophys. Mol. Biol. 51, 47-76 (1988)
13.de Jong, W. W., Terwindt, E. C. and Bloemendal, H.. The amino acid sequence of the A chain of human acrystallin. FEBS Lett. 58, 310-13. (1975)
14.Dubin, R. A., Ally, A. H., Chung, S. and Piatigorsky, J. Human aB-crystallin gene and preferential promoter function in lens. Genomics 7, 594-601. (1990).
15.Lampi, K. J., Ma, Z., Shih, M., Shearer, T. R., Smith, J. B., Smith, D. L. and David, L. L. Sequence analysis of bB3, bA1, bA3 and bA4-crystallins completes the identiÆcation of the major proteins of the young human lens. J. Biol. Chem. 272, 2268-75. (1997).
16.David, L. L., Lampi, K. J., Lund, A. L. and Smith, J. B. The sequence of human bB1-crystallin cDNA allows mass spectrometric detection of bB1 protein missing portions of its N-terminal extension. J. Biol. Chem. 271, 4273-9. (1996)
17.Miesbauer, L. R., Smith, J. B. and Smith, D. L. Amino acid sequence of human lens bB2-crystallin. Protein Sci. 2, 290-1. (1993).
18.Den Dunnen, J. T., Moormann, R. J. M., Cremers, F. P. M. and Schoenmakers, J. G. G. Two human ccrystallin genes are linked and riddled with Alu-repeats. Gene 38, 197-204. (1985)
19.Meakin, S. O., Breitman, M. L. and Tsui, L.-C. Structural and evolutionary relationships among Æve members of the human c-crystallin gene family. Mol. Cell. Biol. 5, 1408-14. (1985)
20.Zarina, S., Abbasi, A. and Zaidi, Z. H. Primary structure of bs-crystallin from human lens. Biochem. J. 287, 375-81. (1992)
21.THE JOURNAL. OF BIOLOGICAL CHEMISTRY Vol. 265, No. 9, Issue of March 25, pp. 4844-4848, (1990)
22.Bhat, S. P., and Nagineni, C. N. Biochem. Biophys. Res. Commun. 158, 319-325. (1989)
23.Dubin, R. A., Wawrousek, E. F., and Piatigorsky, J. Mol. Cell. Biol. 9, 1083-1091. (1989)
24.Hawkins, J. W., van Keuren, M. L., Piatigorsky, J., Law, M. L. Patterson, D., and Kao, F. T. Hum. Genet. 76, 375- 380. (1987)
25.Ngo, J. T., Klisak, I., Dubin, R. A., Piatigorsky, J., Mohandas, T., Sparkes, R. S., and Bateman, J. B. Genomics 5, 665-669. (1989)
26.Slingsby, C. & Bateman, 0. A. Biochemistry 29, 6592- 6599 (1990)
27.Maiti, M., Kono, M. & Chakrabarti, B. FEBS Lett. 236, 109-114 (1988)
28.Henryk Mach+, Phillip A. TrautmanS, John A. Thomson$§, Randolpf V. Lewis& and C. Russell Middaughnli Inhibition of cw-Crystallin Aggregation by y-Crystallin” THE JOURNAL. OF BIOLOGICAL CHEMISTRY Vol. 265, No. 9, Issue of March 25, pp. 4844-4848, (1990)
29.Clark, J. I. Development and maintenance of lens transparency. In Principles and Practice of Ophthalmology (Alberts, E. M. & Jacobiec, F. A., eds), chapt. 7, pp. 114-123, W.B. Saunders, Philadelphia. (1994)
30.Norledge, B. V., Hay, R. E., Bateman, O. A., Slingsby, C. & Driessen, H. P. C. Towards a molecular understanding of phase separation in the lens: a comparison of the X-ray structures of two high Tc g-crystallins, gE and gF, with two low Tc γg-crystallins, gB and gD. Exp. Eye Res. 65, 609-630. (1997)
31.Bettelheim, F. A. & Siew, E. L. in Cell Biology of the Eye (McDevitt, D. S., ed) pp. 243-297, Academic Press, New York (1982)
32.Harding, J. J. in Molecular and Cellular Biology of the Eye Lens (Bloemendal, H., ed) pp. 327-365, John Wiley & Sons, Inc., New York (1981)
33.Nakamura, M., Russell, P., Carper, D. A., Inana, G. & Kinoshita, J. H. J. Biol. Chem. 263, 19218-19221 (1989)
34.Slingsby, C., Driessen, H. P., Mahadevan, D., Bax, B. & Blundell, T. L. Exp. Eye Res. 46,375-403 (1988)
35.E.R.Berman:Selected topics biochemistry relevant to /*--the eye , in E.R. Berman,”Biochemistrry of the eye “ New York ,Plenum Press,pp.359-369 (1992)
36.Huang WQ, Zhang JP, Fu JSC. Differential effects of galactoseinduced cataractogenesis on the soluble crystallins of rat lens. Exp Eye Res. 51:79–85. (1990)
37.Worgul BV, Medvedovsky C, Huang Y, Marino SA, Randers-Pehrson G, Brenner DJ. Quantitative assessment of the cataractogenic po- tential of very low doses of neutrons. Radiat Res.;145:343– 349. (1996)
38.Chandrasekher G, Cenedella RJ. Calcium activated proteolysis and protein modification in the U18666A cataract. Exp Eye Res.; 57:737–745. (1993)
39.Dickerson JE Jr, Dotzel E, Clark AF. Steroid-induced cataract: new perspective from in vitro and lens culture studies. Exp Eye Res.;65:507–516. (1997)
40.Shearer TR, Ma H, Fukiage C, Azuma M. Selenite nuclear cataract: review of the model. Mol Vis.;3:8. (1997)
41.Nakamura Y, Fukiage C, Azuma M, Shearer TR. Oxidation enhances calpain-induced turbidity in young rat lenses. Curr Eye Res.;19:33–40. (1999)
42.Mitton KP, Linklater HA, Dzialoszynski T, Sanford SE, Starkey K, Trevithick JR. Modelling cortical cataractogenesis 21: in diabetic rat lenses taurine supplementation partially reduces damage resulting from osmotic compensation leading to osmolyte loss and antioxidant depletion. Exp Eye Res.;69:279–289. (1999)
43.Fukiage C, Azuma M, Nakamura Y, Tamada Y, Nakamura M, Shearer TR. SJA6017, a newly synthesized peptide aldehyde inhibitor of calpain: amelioration of cataract in cultured rat lenses. Biochim Biophys Acta.;1361:304–312. (1997)
44.Lou MF, Xu GT, Cui XL. Further studies on the dynamic changes of glutathione and protein-thiol mixed disulfides in H2O2 induced cataract in rat lenses: distributions and effect of aging. Curr Eye Res.;14:951–958. (1995)
45.Swamy-Mruthinti S, Green K, Abraham EC. Inhibition of cataracts in moderately diabetic rats by aminoguanidine. Exp Eye Res.; 62:505–510. (1996)
46.Dillon J, Roy D, Spector A, Walker ML, Hibbard LB, Borkman RF. UV laser photodamage to whole lenses. Exp Eye Res.;49: 959–966. (1989)
47.Groenen PJ, Grootjans JJ, Lubsen NH, Bloemendal H, de Jong WW. Lys-17 is the amine-donor substrate site for transglutaminase in beta A3-crystallin. J Biol Chem.;269:831–833. (1994)
48.Ozaki Y, Mizuno A, Itoh K, Iriyama K. Inter- and intramolecular disulfide bond formation and related structural changes in the lens proteins. a Raman spectroscopic study in vivo of lens aging. J Biol Chem.;262:15545–15551. (1987)
49.David LL, Shearer TR, Shih M. Sequence analysis of lens betacrystallins suggests involvement of calpain in cataract formation. J Biol Chem.;268:1937–1940. (1993)
50.Ito H, Iida K, Kamei K, Iwamoto I, Inaguma Y, Kato K. AlphaBcrystallin in the rat lens is phosphorylated at an early post-natal age. FEBS Lett. 1999;446:269–272. normal maturation of rat lens. Invest Ophthalmol Vis Sci.; 35:785–793. (1994)
51.Feriel Skouri-Paneta,U, Franc¸oise Bonnetea, Karine Prata, ´ ´Orval A. Batemanb, Nicolette H. Lubsenc, Annette Tardieua Lens crystallins and oxidation: the special case of gS Biophysical Chemistry 89 65-76 (2001)
52.M.S.Swamy and E.C.Abraham ; Lens Protein Composition,Glycation and High Molecular Weight Aggregation in Aging Rats ; Invest Ophthalmol Vis Sci 28:1693-1701,(1987)
53.Lei Bu,1,2 Shunsheng Yan,3 Meilei Jin,2 Yiping Jin,4 Chuan Yu,2 Shangxi Xiao,1,2 Qinglian Xie,2 Landian Hu,2 Yong Xie,5 Yeerjiang Solitang,3 Jing Liu;The γS-Crystallin Gene Is Mutated in Autosomal Recessive Cataract in Mouse GENOMICS Vol. 80, Number 1, July(2002)
54.Edmond DE HOFFMANN, jean CHARETTE ,Vincent STROOBANT ; Mass Spectrometry Principles and Applications
55.Straatsma, B. R., Horwitz, J., Takemoto, L. J., Lightfoot, D. O., and Ding, L. L.. Clinicobiochemical correlations in aging-related human cataract. Am. J. Ophthalmol. 97:457–469. (1984)
56.Liu, C., Pande, J., Lomakin, A., Ogun, O., and Benedek, G. B.. Aggregation in aqueous solutions of bovine lens _-crystallins: special role of gamma(s). Invest. Ophthalmol. Vis. Sci. 39: 1609–1619. (1998)
57.Bours, J. Calf lens _-crystallin, a molecular chaperone, builds stable complexes with _ s- and _-crystallins. Ophthalmic. Res. 28 (Suppl. 1): 23–31. (1996).
58.M. Wenk, R. Herbst, D. Hoeger, M. Kretschmar, N.H. Lubsen, R. Jaenicke, gS-crystallin of vertebrate eye lens: solution structure, stability and folding of the intact two-domain protein and its separate domains, Bio-phys. Chem. 86 (2-3) 95-108. (2000)
59.L. TAKEMOTOa*, N. FUJIIb AND D. BOYLEa ;Mechanism of Asparagine Deamidation During Human Senile Cataractogenesis;Exp. Eye Res. 72, 559±563 (2001)
60.Kirsten J. Lampi,1 Marjorie Shih,1 Yoji Ueda,2,3 Thomas R. Shearer,1,4 and Larry L. David1,, Lens Proteomics: Analysis of Rat Crystallin Sequences and Two-Dimensional Electrophoresis Map , Investigative Ophthalmology & Visual Science, Vol. 43, No. 1 January,(2002)