簡易檢索 / 詳目顯示

研究生: 陳建亨
Chen, Chien-Heng
論文名稱: 製備具高催化能力與高透明度的白金對電極及其在染料敏化太陽能電池應用之研究
Fabrication of Efficient Platinum Counter Electrodes with High Transparency for Dye-Sensitized Solar Cell Applications
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 104
中文關鍵詞: 濺鍍法電化學沉積法對電極染料敏化太陽能電池
外文關鍵詞: Sputtering, Electrodeposition, Counter electrode, Dye-sensitized solar cells
相關次數: 點閱:103下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用濺鍍法(Sputter)與電化學沈積法(Electrodeposition)將白金薄膜沉積至ITO導電基板上,並作染料敏化太陽能電池的對電極。主要目的在製備兼具高穿透度及高催化能力的白金薄膜對電極,並探討其正面與背面照光下的光電轉換效率。利用濺鍍法,當厚度為1.4nm的白金薄膜擁有最佳的催化能力且同時兼具高穿透度(波長光550nm下76%),應用在正面及背面照光的電池效率分別為7.3%及5.9%。利用電化學法,以直流電沉積(0.1A的電流,沉積時間0.3秒)所得的白金薄膜具高穿透度特性(波長光550nm下81%),應用在背面照光的電池效率與濺鍍法相近。以脈衝電沉積(0.1A的電流,0.1s on-time,0.3s off-time,18 cycles) 所得的白金薄膜具高催化能力特性,應用在正面照光的電池效率與濺鍍法相近。由濺鍍法與電化學沉積法製備的白金薄膜對電極,可讓背面與正面照光的電池效率比值(ηb/ηf)分別達到0.80及0.82,其值都比文獻上提及的高。這結果顯示,利用濺鍍法與電化學沉積法都可以有效提升背面照光的電池效率。

    Platinum films were deposited on indium tin oxide (ITO) substrates in a sputtering process and electrodeposition process used as counter electrodes of dye-sensitized solar cells. The purpose in preparing is mainly provided with high transmittance and high catalytic activity of platinum counter electrode. By sputtering process and Pt film (1.4nm), Pt film has the best catalytic activity and the highest transmittance (76%, wavelength 550nm), and the efficiencies of front-side and back-side illumination are 7.3% and 5.9, respectively. By Electrodeposition with direct current (0.1A and 0.3s), Pt film has high transmittance (81%, wavelength 550nm). For the back-side illumination, the efficiency is closed to one by sputtering process. With pulse current (0.1A, 0.1s on-time,0.3s off-time,18 cycles) , the Pt film has higher catalytic activity. For the front-side illumination, the efficiency is closed to the one by sputtering process. Preparing Pt film by sputtering process and electrodeposition process, the ratio of the energy conversion efficiencies between back (ηb) and front (ηf) illumination, (ηb/ηf), are 0.80 and 0.82 respectively. These values are higher in comparison with those reported in the literature. This result shows the sputtering process and electrodeposition process will increase the efficiency of back-side illumination.

    中文摘要 I ABSTRACT II 誌謝 III 表目錄 IX 圖目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 4 第二章 文獻回顧及理論原理 7 2-1 DSSC之沿革及發展現況 7 2-2 對電極在DSSC之發展與其應用 10 2-2.1 白金對電極(Platinum CEs) 12 2-2.2 金屬基板的對電極 (Metal substrates for CEs) 14 2-2.3 碳材料(Carbon material) 14 2-2.4 碳黑對電極(carbon black CEs) 15 2-2.5 高分子材料(Polymer materials) 16 2-2.6 高分子-碳 複合材料(Polymer-carbon composites) 16 2-2.7 高分子-白金 複合材料(Polymer-Pt composite) 17 2-3 DSSC之工作原理 18 2-4 DSSC之組成結構 20 2-4.1 透明導電玻璃 21 2-4.2 氧化物半導體 21 2-4.3 光敏化劑 22 2-4.4 電解液 23 2-4.5 白金對電極 25 第三章 實驗設備及分析與藥品 26 3-1 儀器設備 26 3-2 實驗耗材與藥品 35 3-3 實驗流程 37 3-3.1 透明導電玻璃清潔(Transparent conductive oxide,TCO)38 3-3.2 二氧化鈦膠體溶液配製 40 3-3.3 二氧化鈦薄膜製備 40 3-3.4 光敏化劑(N719)於TiO2薄膜上的吸附 41 3-3.5 電解液配製 42 3-3.6 對電極的製備 42 3-3.7 DSSC之電流電壓輸出特性 45 3-3.8 DSSC之電化學阻抗分析(Electrochemical Impedance Spectroscopy,EIS ) [44] 48 第四章 實驗結果與討論 52 4.1 離子濺鍍法製備對電極之分析 52 4-1.1 不同沉積時間的對電極之電池效能分析 52 4-1.2 對電極之厚度分析 55 4-1.3 對電極之穿透度分析 56 4-1.4 對電極之EIS分析 59 4-1.5 對電極之AFM分析 61 4-1.6 散射層之應用 64 4-2電化學沉積法製備對電極之分析 73 4-2.1 對電極之EIS與穿透度分析 73 4-2.2 不同沉積條件的對電極之電池效能分析 77 4-2.3 對電極之AFM分析 81 第五章 結論 83 第六章 未來工作與建議 85 參考文獻 87 附錄 99 作者自述 104

    參考文獻
    1. M. Grätzel, “Powering the planet” Nature 403, 363 (2000)

    2. H. Tsubomura, M. Matsumura, Y, Nomura and T. Amamiya, “Dye-sensitized zinc oxide/aqueous electrolyte/platinum photocell” Nature 261, 402 (1976)

    3. B. O’Regan and M. Grätzel, “A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature 353, 737 (1991)

    4. C.Y. Chen, M. Wang, J.Y. Li, N. Pootrakulchote, L. Alibabaei, C.H. Ngoc-le, J.D. Decoppet, J.H. Tsai, C. Grätzel, C.G. Wu, S. M. Zakeeruddin and M. Grätzel , “Highly Efficient Light-HarvestingRuthenium Sensitizer for Thin-FilmDye-Sensitized Solar Cells” ACSNANO. 3, 3103 (2009)

    5. T. Miyasaka, M. Ikegami and Y. Kijitori, “Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania” J. Electrochem. Soc. 154, A455 (2007)
    6. T. Miyasaka and Y. Kijitori, “Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers” J. Electrochem. Soc., 151, A1767 (2004).
    7. S. Ito, N. L. Cevey Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. Khaja Nazeeruddin and M. Grätzel, “High-Efficiency (7.2%) Flexible Dye-Sensitized Solar Cells with Ti-Metal Substrate for Nanocrystalline-TiO2 Photoanode.” Chem. Commun. , 4004 (2006).
    8. T. Yamaguchi, N. Tobe, D. Matsumoto and H. Arakawa, “Highly Efficient Plastix Substrate Dye-Sensitized Solar Cells Using A Compression Method for Preparation of TiO2 Photoelectrodes.” Chem. Commun. , 4767 (2007).
    9. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Photons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cells” J. Phys. Chem. B 107, 8981 (2003)
    10. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers” J. Am. Chem. Soc 127, 16835 (2005)B.
    11. A. F. Nogueira and M. D. Paoli, “A Dye Sensitized TiO2 Photovoltatic Cell Constructed with an Elastomeric Electrolyte” Solar Energy Materials & Solar Cells 61, 135 (2000)

    12. W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, “Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells: Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine” J. Phys. Chem. B 105, 12809 (2001)

    13. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros and P. Falaras, “Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells” Nano Lett. 2, 1259 (2002)

    14. P. Malik, M. Castro and C. Carrot, “Thermal Degradation During Melt Processing of Poly(ethylene oxide), Poly(vinylidenefluoride-co-hexafluoropropylene) and Their Blends in the Presence of Additives, for Conducting Applications” Polymer Degradation and Stability 91, 634 (2006)

    15. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin,T. Sekiguchi and M. Grätzel, “A Stable Quasi-Solid-State Dye-Sensitized Solar Cell with an Amphiphilic Ruthenium Sensitizer and Polymer Gel Electrolyte” Nature Materials 2, 402 (2003)

    16. P. Wang, S. M. Zakeeruddin, M. Grätzel, “Solidifying Liquid Electrolytes with Fluorine Polymer and Silica Nanoparticles for Quasi-Solid Dye-Sensitized Solar Cells” Journal of Fluorine Chemistry 125, 1241 (2004)

    17. P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane and M. Grätzel, “Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell” J. Am. Chem. Soc 126, 13590 (2004)
    18. Takurou N. Murakami and M. Grätzel, “Counter electrodes for DSC: Appication of functional materials as catalysts” Inorganica Chimica Acta. 361, 572 (2008)
    19. A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder” Sol. Energy Mater. Sol. Cells, 44, 99 (1996)
    20. T. Kitamura, M. Maitani, M. Matsuda, Y. Wada and S. Yanagida, “Improved Solid-State Dye Solar Cells with Polypyrrole Using a Carbon-Based Counter Electrode” Chemistry Letters, 1054 (2001).
    21. Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, “I-/I3- redox reaction behavior on poly(3,4-ethylenedioxythiophene) counterelectrode in dye-sensitized solar cells” J. Photochem. Photobiol. A. Chem. 164, 153 (2004)
    22. K. Suzuki, M. Yamamoto, M. Kumagai, S. Yanagada, “Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells” Chem. Lett. 32, 28 (2003)
    23. K. Imoto, K. Takatashi, T. Yamaguchi, T. Komura, J. Nakamura, and K. Murata, “High-performance carbon counter electrode for dye-sensitized solar cells” Sol. Energy Mater. Sol. Cells, 79, 459 (2003)
    24. N. Fukuri, Y. Saito, W. Kubo, G.K.R. Senadeera, T. Kitamura, Y. ada, S. Yanagida, “Performance Improvement of Solid-State Dye-Sensitized Solar Cells Fabricated Using Poly(3,4-ethylenedioxythiophene) and Amphiphilic Sensitizing Dye” J. Electrochem. Soc., 151, 1745 (2004)
    25. T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, E. Abe, “Properties of several types of novel counter electrodes for dye-sensitized solar cell” J. Electroanal. Chem., 574, 77 (2004)
    26. R. Senadeera, N. Fukuri, Y. Saito, T. Kitamura, Y. Wada, S. Yanagida, “Volatile solvent-free solid-state polymer-sensitized TiO2 solar cells with poly(3,4-ethylenedioxythiophene) as a hole-transporting medium.” Chem. Commun., 2259 (2005)
    27. T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, and M. Grätzel, “Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes” J. Electrochem. Soc., 153, A2255 (2006)
    28. N. Ikeda, K. Teshima, T. Miyasaka, “Conductive polymer–carbon–imidazolium composite: a simple means forconstructing solid-state dye-sensitized solar cells” Chem. Commun. , 1733 (2006)
    29. T.C. Wei, C.C. Wan, Y.Y. Wang, “Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells” Appl. Phys. Lett. , 88, 103122 (2006)
    30. X. Fanga, T. Ma, M. Akiyama, G. Guan, S. Tsunematsua, E. Abe, “Flexible counter electrodes based on metal sheet and polymer film fordye-sensitized solar cells” Thin Solid Film , 472, 242 (2005)
    31. Y. Saito, T. Kitamura, Y. Wada, S. Yanagida, “Application of Poly(3,4-ethylenedioxythiophene) to Counter Electrode in Dye-Sensitized Solar Cells. ” Chem. Lett. 31, 1060 (2002)
    32. A. Hagfeldt and M. Grätzel, “Molecular Photovoltaics” Acc. Chem. Res 33, 269 (2000)
    33. D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, “Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells: Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells” Nano Lett. 6, 669 (2006)

    34. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, “A Channel Flow Cell System Specifically Designed to Test the Efficiency of Redox Shuttles in Dye Sensitized Solar Cells” Solar Energy Materials & Solar Cells 70, 85 (2001)

    35. N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J. Frank, “Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells” J. Phys. Chem. B 107, 11307 (2003)

    36. D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, “Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells: Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells” Nano Lett. 6, 669 (2006)

    37. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, “ Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy” J. Am. Chem. Soc. 127, 3456 (2005)
    38. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Müller, P. Liska, N. Vlachopoulos and M. Grätzel, “Conversion of Light to Electricity by cis-XzBis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(11) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes” J. Am. Chem. Soc. 115, 6382 (1993)
    39. P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, “High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte” Chem. Commun, 2972 (2002)

    40. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, “Quasi-Solid-State Dye-Sensitized Solar Cells Using Room TemperatureMolten Salts and a Low Molecular Weight Gelator” Chem. Commun, 374 (2002)
    41. N. Mohmeyer, D. Kuang, P. Wang, H. W. Schmidt, S. M. Zakeeruddin and M. Grätzel, “ An Efficient Organogelator for Ionic Liquids to Prepare Stable Quasi-Solidstate Dye-Sensitized Solar Cells” J. Mater. Chem. 16, 2978 (2006)
    42. S.S. Kim, Y.C. Nah, Y.Y. Noh, J. Jo and D.Y. Kim, “Electrodeposited Pt for cost-efficient and flexibledye-sensitized solar cells” Electrochimica Acta 51, 3814 (2006)
    43. A. Hagfeldt and M. Grätzel, “Molecular Photovoltaics” Acc. Chem. Res 33, 269 (2000)
    44. E. Barsoukov and J.R. Macdonald, “Impedance Spectroscopy:Theory, Experiment, and Application” Wiley-Interscience (2005)
    45. J. G. Webster, “Electrical Impedance Tomography” Adam Hilger, Bristol, (1990)
    46. L. Sheeney-Haj-Ichia, J. Wasserman, I. Willner, “CdS-Nanoparticle Architectures on Electrodes for Enhanced Photocurrent Generation” Adv. Mater. 14(18), 1323 (2002)
    47. L. Sheeney-Haj-Ichia, B. Basnar, I. Willner, “Efficient Generation of Photocurrents by Using CdS/Carbon Nanotube Assemblies on Electrodes” Angew. Chem. Int. Ed. 44, 78 (2005)
    48. M. Lahav, V. H. Shabtai, J. Wasserman, E. Katz, I. Willner, H. Dürr, Y. Z. Hu, S. H. Bossmann, “Photoelectrochemistry with Integrated Photosensitizer-Electron Acceptor and Au-Nanoparticle Arrays” J. Am Chem. Soc. 122, 11480 (2000)
    49. S. Besson, T. Gacoin, C. Ricolleau, C. Jacquiod, J. P. Boilot, “3D Quantum Dot Lattice Inside Mesoporous Silica Films” Nano Lett. 2(4), 409 (2002)
    50. S. C. Lin, Y. L. Lee, C. H. Chang, Y. L. Shen and Y. M. Yang, “Quantum Dot-Sensitized Solar Cells: Assembly of CdS Quantum Dots Coupling Techniques of Self-Assembly Monolayer and Chemical Bath Deposition” Appl. Phys. Lett. 90, 143517 (2007)
    51. L. M. Peter, D. J. Riley, E. J. Tull and K. G. U. Wijayantha, “Photosensitization of Nanocrystalline TiO2 by Self-Assembled Layers of CdS Quantum Dots” Chem. Commun., 1030 (2002)
    52. K.G. U. Wijayanthaa, L. M. Petera and L.C. Otley, “Fabrication of CdS Quantum Dot Sensitized Solar Cells via a Pressing Route” Solar Energy Materials & Solar Cells 83, 363 (2004)
    53. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films” J. Am. Chem. Soc. 128, 2385 (2006)
    54. Q. Shen and T. Toyoda, “Characterization of Nanostructured TiO2 Electrodes Sensitized with CdSe Quantum Dots Using Photoacoustic and Photoelectrochemical Current Methods” Japanese Journal of Applied Physics 43, 2946 (2004)
    55. A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots” Langmuir 14, 3153 (1998)
    56. J. L. Blackburn, D. C. Selmarten, R. J. Ellingson, M. Jones, O. Mićić and A. J. Nozik, “Electron and Hole Transfer from Indium Phosphide Quantum Dots” J. Phys. Chem. B 109, 2625 (2005)
    57. P. Hoyer and R. Könenkamp, “Photoconduction in porous TiO2 sensitized by PbS quantum dots” Appl. Phys. Lett. 66, 349 (1995)
    58. R. Plass, S. Pelet, J. Krueger and M. Grätzel, “Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells” J. Phys. Chem. B 106, 7578 (2002)
    59. R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion” Phys. Rev. Lett. 92, 186601 (2004)
    60. T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A Fujimoto, T. Hirakawa and S. Fukuzumi, “Photovoltaic Cells Using Composite Nanoclusters of Porphyrins and Fullerenes with Gold Nanoparticles” J. Am. Chem. Soc. 127, 1216 (2005)
    61. K. George and P. V. Kamat, “Chromophore-Functionalized Nanoparticles” Acc. Chem. Res. 36, 888 (2003)
    62. Y. Tian and T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles” J. Am. Chem. Soc. 127, 7632 (2005)
    63. R. Vogel, P. Hoyer, and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors” J. Phys. Chem. 98, 3183 (1994)
    64. S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargrnt, “Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics” Nature Materials 4, 138 (2005)
    65. S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori and C. A. Bignozzi, “Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells” J. Am. Chem. Soc. 124, 11215 (2002)
    66. S. Cazzanti, S. Caramori, R. Argazzi, C. M. Elliott and C. A. Bignozzi, “Efficient Non-Corrosive Electron-Transfer Mediator Mixtures for Dye-Sensitized Solar Cells” J. Am. Chem. Soc. 128, 9996 (2006)
    67. T. Nakanishi, B. Ohtani and K. Uosakin, “Effect of Immobilized Electron Relay on the Interfacial Photoinduced Electron Transfer at a Layered Inorganic–Organic Composite Film on Gold” Journal of Electroanalytical Chemistry 455, 229 (1998)
    68. L. Sheeney-Haj-Ichia, S. Pogorelova, Y. Gofer and I. Willner, “Enhanced Photoelectrochemistry in CdS/Au Nanoparticle Bilayers” Adv. Funct. Mater. 14, 416 (2004)
    69. M. Grätzel, “Photoelectrochemical Cells” Nature 414, 338 (2001)
    70. Y. Tachibana, S. A. Haque, I. P. Mercer, J. E. Moser, D. R. Klug and J. R. Durrant, “Modulation of the Rate of Electron Injection in Dye-Sensitized Nanocrystalline TiO2 Films by Externally Applied Bias” J. Phys. Chem. B 105, 7424 (2001)
    71. O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D. Cahen and G. Hodes, “Chemical Bath Deposited CdS/CdSe-Sensitized Porous TiO2 Solar Cells” Journal of Photochemistry and Photobiology A: Chemistry 181, 306 (2006)
    72. N. C. Greenham, X. Peng and A. P. Alivisatos, “Charge Separation and Transport in Conjugated-Polymer/Semiconductor-Nanocrystal Composites studied by Photoluminescence Quenching and Photoconductivity” Phys. Rev. B 54, 628 (1996)
    73. W. U. Huynh, X. Peng, and A. P. Alivisatos, “CdSe Nanocrystal Rods/Poly(3-hexylthiophene) Composite Photovoltaic Devices” Adv. Mater. 11, 923 (1999)
    74. T. Kitamura, M. Maitani, M. Matsuda, Y. Wada and S. Yanagida, “Improved Solid-State Dye Solar Cells with Polypyrrole Using a Carbon-Based Counter Electrode” Chemistry Letters, 1054 (2001)
    75. D. J. Milliron, I. Gur and A. P. Alivisatos, “Hybrid Organic–Nanocrystal Solar Cells” Mrs Bulletin 30, 41 (2005)
    76. B. O’Regana, “Efficient Dye-Sensitized Charge Separation in Wide-Band-Gap p-n Heterojunction” J. Appl. Phys. 80, 4749 (1996)
    77. K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, K. G. U. Wijayantha and V. P. S. Perera, “A Solid-State Photovoltaic Cell Sensitized with a Ruthenium Bipyridyl Complex” J. Phys. D: Appl. Phys. 31, 1492 (1998)
    78. B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin and M. Grätzel, “Electrodeposited Nanocomposite n-p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics” Adv. Mater. 12, 1263 (2000)
    79. G. R. R. A. Kumara, A. Konno, G. K. R. Senadeera, P. V. V. Jayaweera, D.B.R.A. De Silva and K. Tennakone, “Dye-Sensitized Solar Cell with the Hole Collector p-CuSCN Deposited from a Solution in n-Propyl Sulphide” Solar Energy Materials & Solar Cells 69, 195 (2001)
    80. B. O’Regan, F. Lenzmann, R. Muis and J. Wienke, “A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics” Chem. Mater. 14, 5023 (2002)
    81. R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément, B. O’Regan, V. Muňoz-Sanjosé, “ZnO/CdTe/CuSCN, a Promising Heterostructure to Act as Inorganic Eta-Solar Cell” Thin Solid Films 483, 372 (2005)
    82. B. C. O’Regan and F. Lenzmann, “Charge Transport and Recombination in a Nanoscale Interpenetrating Network of n-Type and p-Type Semiconductors: Transient Photocurrent and Photovoltage Studies of TiO2/Dye/CuSCN Photovoltaic Cells” J. Phys. Chem. B 108, 4342 (2004)
    83. St. Kutzmutz, G. Láng and K. E. Heusler, “The Electrodeposition of CdSe from Alkaline Electrolytes” Electrochimica Acta 47, 955 (2001)
    84. C. L. Clément, R. T. Zaera, M. A. Ryan, A. Katty and G. Hodes, “CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterojunction” Adv. Mater. 17, 1512 (2005)
    85. I. Gur, N. A. Fromer, M. L Geier and A. P. Alivisatos1, “Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution” Science 310, 462 (2005)
    86. S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang and L. Jiang, “High Photostability and Quantum Yield of Nanoporous TiO2 Thin Film Electrodes Co-Sensitized with Capped Sulfides” J.Mater. Chem. 12, 1459 (2002)
    87. R. S. Mane, S. J. Roh, O.S. Joo, C. D. Lokhande, S. H. Han, “Improved Performance of Dense TiO2/CdSe Coupled Thin Films by Low Temperature Process” Electrochimica Acta 50, 2453 (2005)
    88. X. D. Ma, X. F. Qian, J. Yin, H. A. Xi, Z. K. Zhu, “Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature” Journal of Colloid and Interface Science 252, 77 (2002)
    89. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell” J. Phys. Chem. B 107, 8981 (2003)
    90. S. G. Hickey and D. J. Riley, “Photoelectrochemical Studies of CdS Nanoparticle-Modified Electrodes” J. Phys. Chem. B 103, 4599 (1999)
    91. J. Bisquert, “Influence of the Boundaries in the Impedance of Porous Film Electrodes” Phys. Chem. Chem. Phys. 2, 4185 (2000)
    92. J. Bisquert and V. S. Vikhrenko, “Interpretation of the Time Constants Measured by Kinetic Techniques in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar Cells” J. Phys. Chem. B 108, 2313(2004)
    93. Q. Wang, J. E. Moser and M. Grätzel, “Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells” J. Phys. Chem. B 109, 14945 (2005)
    94. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata and S. Isoda, “Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy” J. Phys. Chem. B 110, 13872(2006)
    95. 張啟修, “硫化鎘量子點在敏化太陽能電池應用的研究”, 國立成功大學化學工程學系碩士論文, 2007
    96. 羅亦修, “硫化鎘/硒化鎘之兆增感效應在量子點敏化太陽能電池的應用”, 國立成功大學化學工程學系碩士論文, 2008

    下載圖示 校內:2012-07-28公開
    校外:2012-07-28公開
    QR CODE