| 研究生: |
周邦彥 Chou, Bang-Yan |
|---|---|
| 論文名稱: |
經濟分析某一類採用新型化學吸收系統之燃煤電廠 Techno-economic Analysis of a Class of Coal-fired Power Plants with New Chemical Absorption Systems |
| 指導教授: |
吳煒
Wu, Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 化學吸收捕獲二氧化碳 、MEA 、MDEA 、PZ 、Aspen Plus 、薄膜 |
| 外文關鍵詞: | Chemical absorption CO₂ capture, MEA, MDEA, PZ, Aspen Plus , Membrane |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了因應全球暖化,火力發電廠排放的二氧化碳就需要被捕獲下來儲存以減少碳排量,而現今最為成熟的技術是化學吸收程序;本研究在化學吸收捕獲二氧化碳程序中採用三種設計,設計一只在吸收塔和氣提塔之間用熱交換器回收廢熱,設計二在吸收塔中間加入內冷卻器和氣提塔的富含二氧化碳的溶劑分流進料以此降低溶劑蒸發的能耗,設計三在設計二的基礎上加入薄膜分離提純煙道氣進料吸收塔來達到更好的濃度差分布,相較於常見的節能設計可以把再沸器能耗降的更低,也可讓再沸器造成的額外碳排量下降,並分別使用MEA (Monoethanolamine)與MDEA (N-Methyldiethanolamine) 混和PZ (Piperazine)兩種溶劑進行比較設計的節能效果,使用設計一的再沸器能耗分別是3.35 GJ/tonne CO2與2.14 GJ/tonne CO2,使用設計二的再沸器能耗分別是2.86 GJ/tonne CO2與2.10 GJ/tonne CO2,使用設計三的MDEA/PZ的再沸器能耗為2.02 GJ/tonne CO2。
設計三因為薄膜分離提純煙道氣需使用大量電力相較於設計二的操作成本來說更多,把再沸器的供熱來源分成煤炭與天然氣再計算它們各自的價格和碳排量,並考慮EU-ETS的碳權收費後,設計三在碳權價格達到555 $/tonne (2044年的預測價格)後電價總成本會比設計二低。
To combat global warming, carbon dioxide from coal-fired power plants must be captured and stored, with chemical absorption being the most mature technology. This study explores three designs: Design 1 uses a heat exchanger to recover waste heat; Design 2 adds an intercooler and splits CO₂-rich solvent feed to reduce energy consumption; Design 3 enhances Design 2 with a membrane separation unit, improving concentration gradients and further reducing reboiler energy use and emissions. Two solvents, MEA (Monoethanolamine) and MDEA (N-Methyldiethanolamine) mixed with PZ (Piperazine), are used to compare the energy-saving effects of the designs. Reboiler energy consumption in Design 1 is 3.35 GJ/tonne CO₂ for MEA and 2.14 GJ/tonne CO₂ for MDEA/PZ; in Design 2, it is 2.86 GJ/tonne CO₂ and 2.10 GJ/tonne CO₂, respectively; in Design 3, using MDEA/PZ, reboiler energy consumption is 2.02 GJ/tonne CO₂.
Due to the high electricity demand for membrane separation in Design 3, operating costs are higher than in Design 2. When calculating the reboiler’s heat source costs using coal and natural gas and factoring in EU-ETS carbon costs, After the carbon credit price reaches $555/tonne (forecasted for 2044), the total electricity generation cost of Design 3 will be lower than that of Design 2.
[1] C. Intergovernmental Panel on Climate, Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report. Cambridge: Cambridge University Press, 2015.
[2] U. N. F. C. o. C. C. (UNFCCC). "The Paris Agreement." https://unfccc.int/process-and-meetings/the-paris-agreement (accessed.
[3] I. E. A. (IEA). "Global Energy Review: CO2 Emissions in 2020." https://www.iea.org/articles/global-energy-review-co2-emissions-in-2020 (accessed.
[4] R. Energy System Analysis Research Group, National Taiwan University. "Open Energy 2019: Taiwan's Annual Energy Review." https://rsprc.ntu.edu.tw/en/m01-2/energy-transition/open-energy-en/1463-2019-open-energy-st-review.html (accessed.
[5] "Ministry of environment. Stationary pollution sources of information disclosure management platform." https://aodmis.moenv.gov.tw/opendata/#/lv/L0200473/3 (accessed September, 19, 2024).
[6] 張峰林, "燃煤火力發電廠燃燒後薄膜分離碳捕捉程序," 碩士, 化學工程學研究所, 國立臺灣大學, 2016年, 2016.
[7] H. Svensson, C. Hulteberg, and H. T. Karlsson, "Heat of absorption of CO2 in aqueous solutions of N-methyldiethanolamine and piperazine," International Journal of Greenhouse Gas Control, vol. 17, pp. 89-98, 2013/09/01/ 2013, doi: https://doi.org/10.1016/j.ijggc.2013.04.021.
[8] P. T. Frailie, "Modeling of carbon dioxide absorption/stripping by aqueous methyldiethanolamine/piperazine," 2014.
[9] I. Kim and H. F. Svendsen, "Heat of absorption of carbon dioxide (CO2) in monoethanolamine (MEA) and 2-(aminoethyl) ethanolamine (AEEA) solutions," Industrial & engineering chemistry research, vol. 46, no. 17, pp. 5803-5809, 2007.
[10] B. A. Khan, A. Ullah, M. W. Saleem, A. N. Khan, M. Faiq, and M. Haris, "Energy minimization in piperazine promoted MDEA-based CO2 capture process," Sustainability, vol. 12, no. 20, p. 8524, 2020.
[11] H. Lin, H. Luo, A. Pei, and M. Fang, "Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant," Chem. Ind. Eng. Prog, vol. 38, pp. 2046-2055, 2019.
[12] H. Jin, P. Liu, and Z. Li, "Energy-efficient process intensification for post-combustion CO2 capture: A modeling approach," Energy, vol. 158, pp. 471-483, 2018.
[13] J. Kittel, S. Gonzalez, E. Lemaire, and L. Raynal, "Corrosion in post-combustion CO 2 capture plants-comparisons between MEA 30% and new processes," in Eurocorr 2012, 2012.
[14] T. Merkel et al., "Pilot testing of a membrane system for postcombustion CO2 capture," Membrane Technology And Research, Incorporated, Newark, CA (United States), 2015.
[15] N. C. Mat and G. G. Lipscomb, "Membrane process optimization for carbon capture," International Journal of Greenhouse Gas Control, vol. 62, pp. 1-12, 2017.
[16] Enerdata. "Carbon price forecast under the EU ETS." https://www.enerdata.net/publications/executive-briefing/carbon-price-projections-eu-ets.html (accessed 14th October, 2024).
[17] Enerdata. "Carbon price forecast under the EU ETS 2023." https://www.enerdata.net/publications/executive-briefing/carbon-price-projections-eu-ets.html. (accessed 10/14, 2024).
[18] Y. Zhang, H. Que, and C.-C. Chen, "Thermodynamic modeling for CO2 absorption in aqueous MEA solution with electrolyte NRTL model," Fluid Phase Equilibria, vol. 311, pp. 67-75, 2011/12/15/ 2011, doi: https://doi.org/10.1016/j.fluid.2011.08.025.
[19] K. Tochigi, K. Akimoto, K. Ochi, F. Liu, and Y. Kawase, "Isothermal Vapor−Liquid Equilibria for Water + 2-Aminoethanol + Dimethyl Sulfoxide and Its Constituent Three Binary Systems," Journal of Chemical & Engineering Data, vol. 44, no. 3, pp. 588-590, 1999/05/01 1999, doi: 10.1021/je980068i.
[20] H. P. Mangalapally and H. Hasse, "Pilot plant study of post-combustion carbon dioxide capture by reactive absorption: Methodology, comparison of different structured packings, and comprehensive results for monoethanolamine," Chemical Engineering Research and Design, vol. 89, no. 8, pp. 1216-1228, 2011/08/01/ 2011, doi: https://doi.org/10.1016/j.cherd.2011.01.013.
[21] I. Kim, H. F. Svendsen, and E. Børresen, "Ebulliometric Determination of Vapor−Liquid Equilibria for Pure Water, Monoethanolamine, N-Methyldiethanolamine, 3-(Methylamino)-propylamine, and Their Binary and Ternary Solutions," Journal of Chemical & Engineering Data, vol. 53, no. 11, pp. 2521-2531, 2008/11/13 2008, doi: 10.1021/je800290k.
[22] H. F. Svendsen et al., "Vapor liquid equilibrium of pure and aqueous Methyl diethanolamine (MDEA), 2-Dimethylmonoethanolamine (DMMEA), N-Methylmonoethanolamine (MMEA) and 1-(2-Aminoethyl)piperazine (AEP): Experimental results and modeling," Fluid Phase Equilibria, vol. 571, p. 113811, 2023/08/01/ 2023, doi: https://doi.org/10.1016/j.fluid.2023.113811.
[23] Y. Zhang and C.-C. Chen, "Modeling CO2 Absorption and Desorption by Aqueous Monoethanolamine Solution with Aspen Rate-based Model," Energy Procedia, vol. 37, pp. 1584-1596, 2013/01/01/ 2013, doi: https://doi.org/10.1016/j.egypro.2013.06.034.
[24] S. Bishnoi and G. T. Rochelle, "Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine," AIChE Journal, vol. 48, no. 12, pp. 2788-2799, 2002/12/01 2002, doi: https://doi.org/10.1002/aic.690481208.
[25] S. Bishnoi and G. T. Rochelle, "Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility," Chemical Engineering Science, vol. 55, no. 22, pp. 5531-5543, 2000/11/01/ 2000, doi: https://doi.org/10.1016/S0009-2509(00)00182-2.
[26] Y. Zhang, H. Chen, C.-C. Chen, J. M. Plaza, R. Dugas, and G. T. Rochelle, "Rate-Based Process Modeling Study of CO2 Capture with Aqueous Monoethanolamine Solution," Industrial & Engineering Chemistry Research, vol. 48, no. 20, pp. 9233-9246, 2009/10/21 2009, doi: 10.1021/ie900068k.
[27] T. Nittaya, P. L. Douglas, E. Croiset, and L. A. Ricardez-Sandoval, "Dynamic modeling and evaluation of an industrial-scale CO2 capture plant using monoethanolamine absorption processes," Industrial & Engineering Chemistry Research, vol. 53, no. 28, pp. 11411-11426, 2014.
[28] M. E. Claudio Madeddu , Roberto Baratti, CO2 Capture by Reactive Absorption-Stripping Modeling, Analysis and Design. Springer, 2019.
[29] R. Span and W. Wagner, "A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa," Journal of physical and chemical reference data, vol. 25, no. 6, pp. 1509-1596, 1996.
[30] E. Rév, M. Emtir, Z. Szitkai, P. Mizsey, and Z. Fonyo, "Energy savings of integrated and coupled distillation systems," Computers & Chemical Engineering, vol. 25, no. 1, pp. 119-140, 2001.
[31] R. Turton, R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz, Analysis, synthesis and design of chemical processes. Pearson Education, 2008.
[32] 立法院, "113年度中央政府總預算案整體評估報告." [Online]. Available: https://www.ly.gov.tw/Pages/Detail.aspx?nodeid=46405&pid=231908
[33] 環境保護署, "Emission Standards for Air Pollutants from Stationary Sources," 2021. [Online]. Available: https://oaout.moenv.gov.tw/law/Download.ashx?FileID=112402&id=278&type=ANNE
[34] G. T. Rochelle, "Air pollution impacts of amine scrubbing for CO2 capture," Carbon Capture Science & Technology, vol. 11, p. 100192, 2024/06/01/ 2024, doi: https://doi.org/10.1016/j.ccst.2024.100192.
[35] 林海周, 罗海中, 裴爱国, and 方梦祥, "燃煤电厂烟气MDEA/PZ混合胺法碳捕集工艺模拟分析," 化工进展, vol. 38, no. 04, pp. 2046-2055, 2019, doi: 10.16085/j.issn.1000-6613.2018-0740.
[36] B. Zhao et al., "Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant: Process improvement," Applied Energy, vol. 185, pp. 362-375, 2017/01/01/ 2017, doi: https://doi.org/10.1016/j.apenergy.2016.11.009.
[37] S. M. Hosseini-Ardali, M. Hazrati-Kalbibaki, M. Fattahi, and F. Lezsovits, "Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent," Energy, vol. 211, p. 119035, 2020/11/15/ 2020, doi: https://doi.org/10.1016/j.energy.2020.119035.
[38] W. D. Seider, Lewin, D. R., Seader, J. D., Widagdo, S., Gani, R., & Ng, K. M., Product and process design principles: Synthesis, Analysis, and Evaluation. John Wiley & Sons., 2017.
[39] L. Zhao, E. Riensche, L. Blum, and D. Stolten, "Multi-stage gas separation membrane processes used in post-combustion capture: Energetic and economic analyses," Journal of Membrane Science, vol. 359, no. 1, pp. 160-172, 2010/09/01/ 2010, doi: https://doi.org/10.1016/j.memsci.2010.02.003.
[40] R. E. Tsai, "Mass transfer area of structured packing," 2010.
[41] "Distillation Retification Column Corrugated Plate Metal Mellapak Structured Packing For Tower Packing." https://www.alibaba.com/product-detail/Mellapak-Distillation-Retification-Column-Corrugated-Plate_1601029352781.html?spm=a2700.galleryofferlist.p_offer.d_title.3fef478dWDTlCI&s=p (accessed April 20, 2024).
[42] "10-89mm Metal super raschig ring stainless raschig ring metal raschig ring for distillation column." https://www.alibaba.com/product-detail/10-89mm-Metal-Super-Raschig-Ring_1600335201451.html?spm=a2700.galleryofferlist.p_offer.d_title.48eb283duYjvTO&s=p (accessed April 20, 2024).
[43] W. D. Seider, D. R. Lewin, J. Seader, S. Widagdo, R. Gani, and K. M. Ng, Product and process design principles: synthesis, analysis, and evaluation. John Wiley & Sons, 2017.
[44] K. Ramasubramanian, H. Verweij, and W. W. Ho, "Membrane processes for carbon capture from coal-fired power plant flue gas: A modeling and cost study," Journal of membrane science, vol. 421, pp. 299-310, 2012.
[45] 立法院, "台灣電力股份有限公司109年度營業預算評估報告." [Online]. Available: https://www.ly.gov.tw/Pages/List.aspx?nodeid=37061
[46] G. A. Alkhayat WA, "Estimating manning levels for process plants," AACE Transactions, pp. I.2.1–I.2.4, 1984.
[47] U. S. E. P. Agency, "Climate leaders greenhouse gas inventory protocol offset project methodology : for project type: industrial boiler efficienty (version 1.3.)," 2008. [Online]. Available: https://nepis.epa.gov/Exe/ZyNET.exe/P10017FQ.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2006+Thru+2010&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C06thru10%5CTxt%5C00000004%5CP10017FQ.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
[48] A. Hartono, M. Saeed, A. F. Ciftja, and H. F. Svendsen, "Binary and ternary VLE of the 2-amino-2-methyl-1-propanol (AMP)/piperazine (Pz)/water system," Chemical Engineering Science, vol. 91, pp. 151-161, 2013.
校內:2027-01-21公開