簡易檢索 / 詳目顯示

研究生: 卡地斯
Cardenas, Pablo-Manuel
論文名稱: The Study on Behavioral Intention of Use Towards a Clinical Decision Support Systems: A Case in CNS La Paz - Bolivia
The Study on Behavioral Intention of Use Towards a Clinical Decision Support Systems: A Case in CNS La Paz - Bolivia
指導教授: 鄭至甫
Fuh-Jeng, Jyh
學位類別: 碩士
Master
系所名稱: 管理學院 - 國際經營管理研究所碩士班
Institute of International Management (IIMBA--Master)
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 70
外文關鍵詞: Clinical Decision Support Systems, Intentions of Use, Technology of Acceptance Model, Decision Support Systems, Unified Theory of Acceptance and Use of Technolo, UTAUT, TAM, Expert Systems
相關次數: 點閱:88下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This study discusses the role of behavioral intentions towards a Clinical Decision Support System in La Paz – Bolivia, more specifically Caja Nacional de la Salud (CNS) - La Paz. Specific Research on clinical decision support systems (CDSSs) is limited in the area of computer science and engineering and is rarely seen in behavioral intention analysis. Additionally, previous studies on CDSS are not focused on diagnosis of patients. This study identified whether there is an interrelationship
    among the research variables by testing the model developed through survey research. A 47-item questionnaire survey targeted at CNS doctors and specialist in the area of Aneurysms was conducted to develop and validate a measure of users behavioral and to assess its impacts and antecedents. Performance Expectancy, Effort Expectancy were found to exert a significant influence on Attitudes Towards Use. Behavioral Intentions was found to be positively influenced by Attitude Towards Use. Thus, Social Influence does not have a positive impact on Behavioral Intentions, it does not have a positive impact on Attitudes Towards Behavior. Understanding Behavioral Intentions, then, is important to the successful implementation of the clinical decision support systems in the medical area.

    ACKNOWLEDGEMENTS............................................................................... I ABSTRACT.................................................................................................. II TABLE OF CONTENTS.............................................................................................III LIST OF TABLES.......................................................................................................VI LIST OF FIGURES ................................................................................................... VII CHAPTER ONE INTRODUCTION .............................................................................1 1.1 Research Background and Motivation. .........................................................1 1.1.1 What is an Artificial Neural Network? .....................................................3 1.1.2 What is an Aneurysm? ..............................................................................4 1.1.3 What Causes an Aneurysm?......................................................................4 1.1.4 Aneurisms in Bolivia. ................................................................................4 1.2 Research Objectives. .....................................................................................5 1.3 Research Project. ...........................................................................................5 1.4 Research Procedure. ......................................................................................6 1.5 The Structure of the Study.............................................................................7 CHAPTER TWO LITERATURE REVIEW..................................................................9 2.1 Theoretical Background: Technology Acceptance Model 2 and Unified Theory of Acceptance and Use of Technology..............................................9 2.2 Definition of Relevant Research Variables. ...................................................13 2.2.1 Performance Expectancy. .......................................................................13 2.2.2 Effort Expectancy. ...................................................................................16 2.2.3 Social Influence.......................................................................................18 2.2.4 Attitude Towards Use. .............................................................................20 2.2.5 Behavioral Intention of Use. ...................................................................20 2.3 Interrelationship among Research Constructs. ..............................................21 2.3.1 Interrelationship between Attitude Towards Use and Performance Expectancy. ..........................................................................................21 2.3.2 Interrelationship between Attitude Towards Use and Effort Expectancy.22 2.3.3 Interrelationship between and Performance Expectancy and Effort Expectancy. ..........................................................................................23 2.3.4 Interrelationship between Attitude Towards Use of the CDSS, Behavioral intentions of use the CDSS and Social Influence. .............24 2.3.5 Interrelationship between Attitude Towards Use and Behavioral Intention of Use....................................................................................25 CHAPTER THREE RESEARCH DESIGN AND METHODOLOGY .......................26 3.1 Conceptual Model..........................................................................................27 3.2 Construct Measurement. ................................................................................27 3.2.1 Performance Expectancy. .......................................................................27 3.2.2 Effort Expectancy. ...................................................................................29 3.2.3 Social Influence.......................................................................................30 3.2.4 Attitude Towards Use. .............................................................................30 3.2.5 Behavioral Intentions of Use. .................................................................31 3.3 Hypotheses to be tested..................................................................................31 3.4 Questionnaire Design.....................................................................................32 3.5 Sampling Plan. ...............................................................................................32 3.6 Data Analysis Procedure. ...............................................................................32 3.6.1 Purification and Reliability of the Measurement Variables....................32 3.6.2 Differences of Research Variables among Groups..................................33 CHAPTER FOUR RESEARCH RESULTS ................................................................35 4.1 Introduction....................................................................................................35 4.2 Descriptive Analysis. .....................................................................................35 4.2.1 Data Collection.......................................................................................35 4.2.2 Characteristic of Respondents. ...............................................................36 4.3 Reliability Tests..............................................................................................36 4.3.1Performance Expectancy. ........................................................................39 4.3.2 Effort Expectancy. ...................................................................................41 4.3.3 Social Influence.......................................................................................42 4.3.4 Attitude towards Use...............................................................................43 4.4 Structure Equation Model (SEM). .................................................................44 CHAPTER FIVE CONCLUSIONS AND RECOMMENDATIONS...........................48 5.1 Research Conclusions. ...................................................................................48 5.2 Research Suggestions and Limitations. .........................................................53 5.3 Research Contribution. ..................................................................................54 REFERENCES…… ....................................................................................................55 APPENDICES……. ....................................................................................................62 Appendix 1 Research Questionnaire....................................................................62 Appendix 2 Online Research Questionnaire........................................................69

    Adams, D., Nelson, R., & Todd, P. (1992). Perceived Usefulness, Ease of Use and Usage of Information Technology: A Replication. MIS Quarterly, 227(47).
    Agarwal, R., & Prasad, J. (1997). The Role of Innovation Characteristics and Perceived Voluntariness in the Acceptance of Information Technologies. Decision Sciences, 28(3), 557-582.
    Agarwal, R., & Prasad, J. (1998). A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology. Information Systems Research, 9(2), 204-215.
    Agarwal, R., & Prasad, J. (1999). Are Individual Differences Germane to the Acceptance of New Information Technologies? Decision Sciences, 30(2), 361-391.
    Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
    Bagozzi, R. P. (1992). The Self-Regulation of Attitudes, Intentions, and Behavior. Social Psychology Quarterly, 55(2), 178-204.
    Bajaj, A., & Nidumolu, S. R. (1998). A feedback model to understand information system usage. Information & Management, 33(4), 213-224.
    Balas, E. A., Austin, S. M., Mitchell, J. A., Ewigman, B. G., Bopp, K. D., & Brown, G. D. (1996). The Clinical Value of Computerized Information Services: A Review of 98 Randomized Clinical Trials. Arch Fam Med, 5(5), 271-278.
    Basaglia, S., Caporarello, L., Magni, M., & Pennarola, F. (2008). Individual Adoption of Convergent Mobile Technologies In Italy Interdisciplinary Aspects of Information Systems Studies (pp. 63-69).
    Bates, D. W., Cohen, M., Leape, L. L., Overhage, J. M., Shabot, M. M., & Sheridan, T. (2001). Reducing the Frequency of Errors in Medicine Using Information Technology. Journal of the American Medical Association, 8(4), 299-308.
    Bates, D. W., Kuperman, G. J., Wang, S., Gandhi, T., Kittler, A., Volk, L., et al. (2003). Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. Journal of the American Medical Informatics Association, 10(6), 523-530.
    Bergman, L. G., & GH, U. (2005). Computer-aided DSM-IV-diagnostics – acceptance, use and perceived usefulness in relation to users' learning styles. Medical Informatics and Decision Making, 5(1).
    Bueno, S., & Salmeron, J. L. (2008). TAM-based success modeling in ERP. Interacting with Computers, 20(6), 515-523.
    Burnkrant, R. E., & Cousineau, A. (1975). Informational and Normative Social Influence in
    Buyer Behavior. The Journal of Consumer Research, 2(3), 206-215.
    Byrd, T. A. (1993). Expert Systems in Production and Operations Management: Results of a
    Survey. Interfaces, 23(2), 118-129.
    Castaeda, J. A., Muoz-Leiva, F., & Luque, T. (2007). Web Acceptance Model (WAM):
    Moderating effects of user experience. Information & Management, 44(4), 384-396.
    Changchit, C., Holsapple, C. W., & Madden, D. L. (2001). Supporting managers' internal
    control evaluations: an expert system and experimental results. Decision Support
    Systems, 30(4), 437-449.
    Chau, P. Y. K. (1996). An empirical assessment of a modified technology acceptance model.
    Journal of Management Information Systems, 13(2), 185-204.
    Chismar, W. G., & Wiley-Patton, S. (2003). Does the Extended Technology Acceptance
    Model Apply to Physicians. Paper presented at the Proceedings of the 36th Hawaii
    International Conference on System Sciences - 2003, Hawaii.
    Clocksin, W. F. (2003). Artificial Intelligence and the Future. Philosophical Transactions:
    Mathematical, Physical and Engineering Sciences, 361(1809), 1721-1748.
    Compeau, D., & Higgins, C. (1995). Computer Self-Efficacy: Development of a Measure and
    Initial Test. MIS Quarterly, 19(2), 189-211.
    Compeau, D., Higgins, C. A., & Huff, S. (1999). Social Cognitive Theory and Individual
    Reactions to Computing Technology: A Longitudinal Study. MIS Quarterly, 23(2),
    145-158.
    Coursey, D. H., & Shangraw, R. F., Jr. (1989). Expert System Technology for Managerial
    Applications: A Typology. Public Productivity Review, 12(3), 237-262.
    Curran, J. M., Meuter, M. L., & Surprenant, C. F. (2003). Intentions to Use Self-Service
    Technologies: A Confluence of Multiple Attitudes. Journal of Service Research, 5(3),
    209-224.
    Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of
    Information Technology. MIS Quarterly, 13(3), 319-340.
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer
    Technology: A Comparison of Two Theoretical Models. Management Science, 35(8),
    982-1003.
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation to
    Use Computers in the Workplace. Journal of Applied Social Psychology, 22(14),
    1111-1132.
    57
    Dreiseitl, S., Binder, M., Vinterbo, S., & Kittler, H. (2007). Applying a decision support
    system in clinical practice: Results from melanoma diagnosis. Paper presented at the
    Annual Symposium Proceeding, Austria.
    Eagly, A., & Chaiken, S. (1993). The psychology of attitudes. Orlando, FL: Harcourt Brace
    Jovanovich.
    Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to
    theory and research MA: addison-wesley foreign products. Journal of Advertising
    Research, 47(1), 25-32.
    Garg, A. X., Adhikari, N. K. J., McDonald, H., Rosas-Arellano, M. P., Devereaux, P. J.,
    Beyene, J., et al. (2005). Effects of Computerized Clinical Decision Support Systems on
    Practitioner Performance and Patient Outcomes: A Systematic Review. Journal of the
    American Medical Informatics Association, 293(10), 1223-1238.
    Goodhue, D. (1988). I/S attitudes: toward theoretical and definitional clarity. SIGMIS
    Database, 19(3-4), 6-15.
    Goodhue, D. L., & Thompson, R. L. (1995). Task-Technology Fit and Individual
    Performance. MIS Quarterly, 19(2), 213-236.
    Hair, J. F., Black, B., Babin, B., Anderson, R. E., & Tatham, R. L. (2006). Multivariate Data
    Analysis (6th ed.): Prentice Hall International.
    Hartwick, J., & Barki, H. (1994). Explaining the Role of User Participation in Information
    System Use. Management Science, 40(4), 440-465.
    Hsu, C.-L., & Lu, H.-P. (2004). Why do people play on-line games? An extended TAM with
    social influences and flow experience. Information & Management, 41(7), 853-868.
    Hu, P. J., Chau, P. Y. K., Sheng, O. R. L., & Tam, K. Y. (1999). Examining the technology
    acceptance model using physician acceptance of telemedicine technology. Journal of
    Management Information Systems, 16(2), 91-112.
    Hunt, D. L., Haynes, R. B., Hanna, S. E., & Smith, K. (1998). Effects of Computer-Based
    Clinical Decision Support Systems on Physician Performance and Patient Outcomes: A
    Systematic Review. Journal of the American Medical Association, 280(15), 1339-1346.
    Igbaria, M., Parasuraman, S., & Baroudi, J. J. (1996). A motivational model of
    microcomputer usage. Journal of Management Information Systems, 13(1), 127-143.
    Inc., W. F. (2009, 2 June 2009). Clinical Desicion Support Systems, 2009, from
    http://en.wikipedia.org/wiki/Clinical_decision_support_system
    Jackson, C. M., Chow, S., & Leitch, R. A. (1997). Toward an Understanding of the
    Behavioral Intention to Use an Information System. Decision Sciences, 28(2), 357-389.
    Johnston, M. E., Langton, K., Haynes, B., & Mathieu, A. (1994). Effects of Computer-based
    Clinical Decision Support Systems on Clinician Performance and Patient Outcome: A
    Critical Appraisal of Research. Annals of Internal Medicine, 120(2), 135-142.
    58
    Karahanna, E., & Straub, D. W. (1999). The psychological origins of perceived usefulness
    and ease-of-use. Information & Management, 35(4), 237-250.
    Kawamoto, K., Houlihan, C. A., Balas, E. A., & Lobach, D. F. (2005). Improving clinical
    practice using clinical decision support systems: a systematic review of trials to identify
    features critical to success. British Medical Journal, 330(7495).
    Keen, & W., P. G. (1981). Value Analysis: Justifying Decision Support Systems. MIS
    Quarterly, 5(1), 1-15.
    Klein, K. J., & Sorra, J. S. (1996). The Challenge of Innovation Implementation. The
    Academy of Management Review, 21(4), 1055-1080.
    Lee, J., & Allaway, A. (2002). Effects of personal control on adoption of self-service
    technology innovations. Journal of Services Marketing, 16(6), 553-572.
    Lee, Y. (2006). An empirical investigation into factors influencing the adoption of an
    e-learning system. Online Information Review, 30(5), 517-541.
    Liker, J. K., & Sindi, A. A. (1997). User acceptance of expert systems: a test of the theory of
    reasoned action. Journal of Engineering and Technology Management, 14(2), 147-173.
    Liu, J., Wyatt, J. C., & Altman, D. G. (2006). Decision tools in health care: focus on the
    problem, not the solution. Medical Informatics and Decision Making, 6(4).
    Malhotra, Y., & Galletta, D. F. (1999). Extending the technology acceptance model to
    account for social influence: theoretical bases and empirical validation. Paper presented
    at the System Sciences, 1999. HICSS-32. Proceedings of the 32nd Annual Hawaii
    International Conference, Hawaii.
    Mathieson, K. (1991). Predicting User Intentions: Comparing the Technology Acceptance
    Model with the Theory of Planned Behavior. Information Systems Research, 2(3),
    173-191.
    McCaffrey, M. J. (1992). Maintenance of expert systems: the upcoming challenge Managing
    expert systems (pp. 262-284). Heshey,PA, USA: IGI Publishing.
    Metaxiotis, K., & Psarras, J. (2003). Expert systems in business: applications and future
    directions for the operations researcher. Industrial Management & Data Systems,
    103(5), 361 - 368.
    Moon, J.-W., & Kim, Y.-G. (2001). Extending the TAM for a World-Wide-Web context.
    Information & Management, 38(4), 217-230.
    Moore, G. C., & Benbasat, I. (1991). Development of an Instrument to Measure the
    Perceptions of Adopting an Information Technology Innovation. Information Systems
    Research, 2(3), 192-222.
    Morton, M. S. S. (1978). Desicion Support Systems: An organizational Perspective: Addison
    - Wesley.
    59
    Murray, E., Pollack, L., White, M., & Lo, B. (2007). Clinical decision-making: physicians'
    preferences and experiences. BMC Family Practice, 8(10).
    Newman-Toker, D. E., & Pronovost, P. J. (2009). Diagnostic Errors—The Next Frontier for
    Patient Safety. Journal of the American Medical Association, 301(11), 1060 - 1062.
    Nguyen, T. D., & Barrett, N. J. (2006). The adoption of the internet by export firms in
    transitional markets. Asia Pacific Journal of Marketing and Logistics, 18(1), 29-42.
    Orlikowski, W. J. (1992). The Duality of Technology: Rethinking the Concept of Technology
    in Organizations. Organization Science, 3(3), 398-427.
    Payne, T. H. (2000). Computer Decision Support Systems. Chest, 118(2), 47-52.
    Phillips, L. A., Calantone, R., & Lee, M.-T. (1994). International Technology Adoption:
    Behavior Structure, Demand Certainty and Culture. Journal of Business & Industrial
    Marketing, 9(2), 16-28.
    Plouffe, C. R., Hulland, J. S., & Vandenbosch, M. (2001). Research Report: Richness Versus
    Parsimony in Modeling Technology Adoption Decisions--Understanding Merchant
    Adoption of a Smart Card-Based Payment System. Information Systems Research,
    12(2), 208-222.
    Prümper, J. (1993). Software-Evaluation Based upon ISO 9241 Paper presented at the
    Proceedings of the Vienna Conference on Human Computer Interaction.
    Renaud, K., & Biljon, J. v. (2008, Oct 1). Predicting technology acceptance and adoption by
    the elderly: a qualitative study. Paper presented at the Proceedings of the 2008 annual
    research conference of the South African Institute of Computer Scientists and
    Information Technologists on IT research in developing countries: riding the wave of
    technology.
    Roberts, P., & Henderson, R. (2000). Information technology acceptance in a sample of
    government employees: a test of the technology acceptance model. Interacting with
    Computers, 12(5), 427-443.
    Rogers, E. M. (1983). Diffusion of Innovations. New York, NY: Free Press.
    Schepers, J., & Wetzels, M. (2007). A meta-analysis of the technology acceptance model:
    Investigating subjective norm and moderation effects. Information & Management,
    44(1), 90-103.
    Sittig, D. F., Krall, M. A., Dykstra, R. H., Russell, A., & Chin, H. L. (2006). A survey of
    factors affecting clinician acceptance of clinical decision support. Medical Informatics
    and Decision Making, 6(6).
    Snead, K. C., & Harrell, A. M. (1994). An Application of Expectancy Theory to Explain a
    Manager's Intention to Use a Decision Support System. Decision Sciences, 25(4),
    499-510.
    60
    Stacey, D., Pomey, M.-P., O'Connor, A. M., & Graham, L. D. (2006). Adoption and
    sustainability of decision support for patients facing health decisions: an implementation
    case study in nursing. Implementation Science, 1(17).
    Stoel, L., & Lee, K. H. (2003). Modeling the effect of experience on student acceptance of
    Web-based courseware. Internet Research: Electronic Networking Applications and
    Policy, 13(5), 364-374.
    Subramanian, G. H., Yaverbaum, G. J., & Brandt, S. J. (1997). An empirical evaluation of
    factors influencing expert systems effectiveness. Journal of System Software, 38(3),
    255-261.
    Suh, E., Diener, E., Oishi, S., & Triandis, H. (1998). The shifting basis of life satisfaction
    judgments across cultures: Emotions versus norms. Journal of Personality and Social
    Psychology, 74(2), 482-493.
    Taylor, S., & Todd, P. (1995a). Assessing IT Usage: The Role of Prior Experience. MIS
    Quarterly, 19(4), 561-570.
    Taylor, S., & Todd, P. (1995b). Understanding Information Technology Usage: A Test of
    Competing Models. Information Systems Research, 6(2), 144-176.
    Teo, T. S. H., Lim, V. K. G., & Lai, R. Y. C. (1999). Intrinsic and extrinsic motivation in
    Internet usage. Omega, 27(1), 25-37.
    Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal Computing: Toward a
    Conceptual Model of Utilization. MIS Quarterly, 15(1), 125-143.
    Thompson, R. L., Higgins, C. A., & Howell, J. M. (1994). Influence of experience on
    personal computer utilization: testing a conceptual model. Journal of Management
    Information Systems, 11(1), 167-187.
    Timmor, Y., & Rymon, T. (2007). To do or not to do: the dilemma of technology-based
    service improvement. Journal of Services Marketing, 21(2), 99-111.
    Tornatzky, L. G., & Klein, K. J. (1982). Innovation Characteristics and Innovation Adoption
    ImplementationA: Meta-Analysis of findings. IEEE Transactions on Engineering
    Management, 29(1), 28-45.
    Trivedi, M. H., Daly, E. J., Kern, J. K., Bruce D Grannemann, Sunderajan, P., & Claassen, C.
    A. (2009). Barriers to implementation of a computerized decision support system for
    depression: an observational report on lessons learned in "real world" clinical settings.
    Medical Informatics and Decision Making, 9(6).
    Turban, E. (1990). Decision Support and Expert Systems: Management Support Systems
    (second ed.). New York: Macmillan Publishing.
    Tyran, C. K., & George, J. F. (1993). The implementation of expert systems: a survey of
    successful implementations. SIGMIS Database, 24(1), 5-15.
    Van Raaij, E. M., & Schepers, J. J. L. (2008). The acceptance and use of a virtual learning
    environment in China. Computers & Education, 50(3), 838-852.
    61
    Venkatesh, V. (1999). Creation of Favorable User Perceptions: Exploring the Role of
    Intrinsic Motivation. MIS Quarterly, 23(2), 239-260.
    Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology
    Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2),
    186-204.
    Venkatesh, V., Morris, M. G., & Ackerman, P. L. (2000). A Longitudinal Field Investigation
    of Gender Differences in Individual Technology Adoption Decision-Making Processes.
    Organizational Behavior and Human Decision Processes, 83(1), 33-60.
    Venkatesh, V., Morris, M. G., Gordon, B. D., & Davis, F. D. (2003). User Acceptance of
    Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478.
    Wei, T. (2006). The causal relationship between technologies attributes. International
    Journal of Management Science, 23(2), 782-793.
    Wong, B. K., & Monaco, J. A. (1995). Expert system applications in business: A review and
    analysis of the literature (1977-1993). Information & Management, 29(3), 141-152.
    Wyatt, J., & Spiegelhalter, D. (1991). Field trials of medical decision-aids: potential problems
    and solutions. Procedings of the Fifthteen Annual Symposium on Computer
    Applicantions in Medical Care Whashington, DC. Journal of the American Medical
    Informatics Association.

    下載圖示 校內:立即公開
    校外:2009-07-23公開
    QR CODE