簡易檢索 / 詳目顯示

研究生: 周裕捷
Chou, Yu-Chieh
論文名稱: 具有嵌入壓電材料之板振動分析
Vibration Analysis of Mindlin Sandwich Plate with Embedded Piezoelectric Structure
指導教授: 王榮泰
Wang, Rong-Tyai
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 99
中文關鍵詞: 有限元素頻率壓電
外文關鍵詞: piezoelectric, finite element, plate, frequencies
相關次數: 點閱:64下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要利用有限元素法分析具有嵌入壓電材料之Mindlin板結構的自由振動特性。本文運用Mindlin板理論定義位移、應變與應力,計算出壓電三明治板的應變能及動能,由漢米爾頓原理求得壓電三明治Mindlin板的靜態平衡方程式,使用靜態的運動方程式推導出其位移場之解並表示成形狀函數(shape function)形式。由應變能及位能找出質量矩陣及剛性矩陣,進而利用Lagrange’s equation將應變能及動能代入得到壓電三明治板元素的運動方程式,再依不同的邊界條件將元素結合,解出系統的模態頻率,並與解析解做對照。最後加上電壓,結合有限元素分析結構之位移變形量。再利用回授控制設計於抑制此結構的振動。

    This study presents natural frequencies and vibration control of rectangular plate embedded with piezoelectric material by Finite Element Method.
    Based on Mindlin’s plate theory, the displacements, strains and stresses of plate can be defined to calculate strain energy and kinetic energy. The governing equation are formulated via the Hamilton’s principle. The displacements solved from static equilibrium equations are used as shape functions of one element. The natural frequencies obtained by the finite element method are compared with those analytic results.
    The effect of constant voltage on the deflection of the plate is demonstrated. Further, the vibration suppression of plate with the piezoelectric layers is displayed .

    目錄 摘 要...........................................................................................................1 Abstract.................................................................................................... II 致謝..........................................................................................................III 目錄.......................................................................................................... IV 圖目錄...................................................................................................... VI 表目錄...................................................................................................VIII 第一章 緒論...............................................................................................1 §1-1 前言...........................................................................................1 §1-2 文獻回顧...................................................................................4 §1-3 研究範圍...................................................................................6 第二章 壓電三明治板之運動方程式......................................................8 §2-1 壓電三明治板之應力與應變...................................................8 §2-2 壓電三明治板之電焓與動能.................................................12 第三章 壓電三明治板之振動分析........................................................22 §3-1 壓電三明治板位移場解..........................................................22 §3-2 壓電板通解的矩陣形式及其shape function ..........................28 §3-3 壓電三明治板元素的質量矩陣及剛性矩陣..........................29 §3-4 有限元素用於壓電三明治板之振動分析..............................30 第四章 嵌入式壓電複合層板之振動分析............................................43 §4-1 三明治板之應力與應變..........................................................43 §4-2 三明治板之應變能與動能.....................................................44 §4-3 三明治板之運動方程式.........................................................47 §4-4 三明治板位移場解與本構方程式..........................................52 §4-5 嵌入式壓電複合層板本構方程式..........................................54 第五章 嵌入式壓電複合層板之回授控制............................................58 §5-1 回授控制分析..........................................................................58 §5-2 Newmark’s Scheme..................................................................60 §5-3 問題與討論.............................................................................61 第六章 總結及建議................................................................................68 §6-1 結論.........................................................................................68 §6-2 建議.........................................................................................68 附錄A........................................................................................................70 附錄B........................................................................................................71 附錄C........................................................................................................72 附錄D........................................................................................................74 附錄E........................................................................................................80 附錄F........................................................................................................85 參考文獻...................................................................................................86

    1. Szilard, Rudolph, Theory and analysis of plates :classical and numerical methods . Englewood Cliffs, N.J. , Prentice-Hall (1973)
    2. R. D. Mindlin, ”Infleunce of Rotatory Inertia and Shear on Flexural Motions of Isotropic Elastic Plates”, Journal of Applied Mechanics, Vol. 18, 31-38 (1951)
    3. O.C. Zienkiewicz and Y.K. Cheung, The finite element method in structural and continuum mechanics . London ; McGraw-Hill (1967)
    4. Bellman, R. E. and Sliepcevich, C. M. , ”Differential quadrature and long-term integration”, Journal of Mathematical Analysis and Application 34, 235-238 (1971)
    5. Ritz, Weinstein, and Aronszajn, Variational methods for eigenvalue problems : an introduction to the methods of Rayleigh . Toronto (1957)
    6. Leissa,A. W. , ”The free vibration of rectangular plates”, Journal of Sound and Vibration , 257-293 (1973)
    7. E. Reissner , ”The Effect of Transverse Shear Deformation on The Bending of Elastic Plates”, Journal of Applied Mechanics,Vol. 12, A69-77 (1945)
    8. R. D. Mindlin, A. Schacknow and H. Deressiewicz, “Flexural Vibration of Rectangular Plates”, Journal of Applied Mechanics,Vol. 23, 431-436 (1956)
    9. Kanaka Raju,K. and Hinton, E, ”Natural frequencies and modes of rhombic Mindlin plate”, Earthquake Engineering and Structural Dynamics 8, 55-62 (1980)
    10. N.D. Phan and J. N. Reddy, ”Analysis of Laminated Composite Plates Using a High-Order Shear Deformation Theory”, International Journal for Numerical Methods in Engineering,Vol. 21, 2201-2219 (1985)
    11. N. S. Putcha and J. N. Reddy, ”Stability and Natural Vibration Analysis of Laminated Plates by Using a Mixed Element Based on Refined Plate Theory”, Journal of Sound and Vibration,Vol. 104, 285-300 (1986)
    12. J. N. Reddy, Mechanics of Laminated Composite Plates . Theory and Analysis, CRC Press, Boca Raton, FL (1997)
    13. E. F. Crawley & J. de Luis, ”Use of piezoelectric actuators as elements of intelligent structures”, AIAA Journal, Vol. 25, No. 10, 1373-1385 (1987)
    14. D. B. Koconis, L. P. Kollar & G. S. Springer, ”Shape control of composite plates and shells with embedded actuators”, Journal of Composite Materials,Vol. 28, 451-548 (1994)
    15. Jin H. Huang, & Heng-I Yi, ”Dynamic electromechanical response of piezoelectric plates as sensors or actuators”, Materials Letters, 70-80 (2000)
    16. Amancio Fernandes, & Joel Pouget, ”Two-dimensional modeling of laminated piezoelectric composite:analysis and numerical results”, Thin-Walled Structures, 3-22 (2000)
    17. H. S. Tzou & G. C. Wang, ”Distributed structural dynamics control of flexible manipulators-I. Structural dynamics and viscoelastic actuator”, Computers and Structures, 669-677 (1990)
    18. S. K. Ha, C Keilers & F. K. Chang, ”Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators”, AIAA Journal, 772-780 (1992)
    19. H. Abramovich & A. Livshits, ”Dynamic behavior of cross-ply laminated beams with piezoelectric actuators”, Computers and Structures, 371-379 (1993)
    20. J. N. Reddy, ”On laminated composite plates with integrated sensors and actuators”, Engineering Structure, 568-593 (1999)
    21. S. H. Chen,Z. D. Wang & X. H. Liu, ”Active Vibration Control and Suppression for Intelligent Structure”, Journal of Sound and Vibration, 167-177 (2002)
    22. S. Y. Wang, S. T. Quek & K. K. Ang, ”Vibration control of smart piezoelectric composite plates”, Smart Materical and Structures, 637-644 (2001)
    23. Y. H. Lim, ”Finite-element simulation of closed loop vibration control of a smart plate under transient loading”, Smart Materical and Structures, 272-286 (2003)
    24.Jose M. Simoes Moita , Isidoro F. P. Correia & Cristovao M. Mota Soares, ”Active control of adaptive laminated structures with bonded piezoelectric sensors and actuators”, Computers and Structures, 1349-1358 (2004)
    25. H. Y. Zhang & Y. P. Shen, ”Vibration suppression of laminated plates with 1-3 piezoelectric fiber-reinforced composite layers equipped with interdigitated electrodes”, Computers and Structures, 220-228 (2006)
    26. H. J. Ding, H. M. Wang & W. Q. Chen, ”Transient Responses in a Piezoelectric Spherically Isotropic Hollow Sphere for Symmetric Problems”, Journal of Applied Mechanics, 436-445 (2003)

    下載圖示 校內:2017-08-24公開
    校外:2017-08-24公開
    QR CODE