簡易檢索 / 詳目顯示

研究生: 陳威朋
Chen, Wei-Peng
論文名稱: 多階段預燒項目選擇--多目標規劃之應用
Selecting Burn-in Policies in Multiple Stages – An Application of Multiple Objective Programming Method
指導教授: 王泰裕
Wang, Tai-Yue
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 93
中文關鍵詞: 預燒政策多目標規劃目標規劃混合整數非線性規劃
外文關鍵詞: burn-in policy, multi-objective programming, goal programming, mixed-integer nonlinear programming
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 預燒測試在產品可靠度上扮演重要的角色,在產品量產階段的預燒測試,能夠將早夭期失效的產品篩檢出來,避免在產品出廠之後產生失效,造成顧客與企業的損失,由於預燒有企業自身的成本考量,以及顧客對產品之期望的目標,因此預燒測試可以視為一項考量多個目標的決策問題。然而預燒測試的政策執行與設定的實務上,決策者多以經驗法則訂定預燒的政策的內容;而過去的文獻當中,並沒有考量到預燒測試當中有多個項目的搭配,因此本研究建構出多階段預燒政策問題的多目標規劃模型,並建構出權重法與目標規劃法之模型,當決策者能夠判斷目標之間的重要度時,可使用權重法進行求解;而對於各個目標的期望已知時,可使用目標規劃方法求解。
    預燒政策模型需考量產品當中多道的製程後是否需要進行預燒測試,並考量當中的預燒項目是否需要使用。模型假設預燒測試的篩檢能力會隨著預燒時間以及預燒項目的水準增加線性遞增,並且能夠篩檢出相對應品質較差的產品,在模型的求解上,預燒時間與項目水準之乘積代換,轉為混合整數線性規劃,並使用Gurobi進行求解。本研究透過文獻案例驗證,不僅能夠得到不同情境之下對應的預燒政策的項目搭配,且得知預燒決策當中,對於政策改變影響最大的因素在於決策者對於重要性的考量、經費與資源、客戶對產品的要求。決策者須善用有限資源,提供客戶最佳的產品,或是在客戶的期望中,盡可能避免多餘的資源消耗,以訂定最佳政策。

    Burn-in test is important to the reliability of products. The infant defects in production stage can be removed by burn-in tests, so that producers could avoid the failure in on field phase and the loss of the customers. Burn-in test decision problem is a multi-objective decision problem, since it needs to consider in costs and expectation from customers. But most of the decision makers were used to use the rule based decisions. In addition, there are no research considered the multiple stage tests and options selecting. Therefore, in this research we have proposed two methods applying for the burn-in multiple stages and multiple options selecting decision problem. Weighted method is that decision makers can use if they could measure the importance between costs and product performance. Goal programming is that decision makers have the information about the target value of the total costs or the product performance.
    In this research we considered the multi-stage burn-in test of the products, and there are several options can be chosen in each stages. The proportion of the defects removed will increased simultaneously with the burn-in time and the parameters level of the options. Since the models could be formulated in linear form, we used Gurobi to solve the problems to get the solution. Then we used the previous case to prove the models’ feasibility, and got the decision of the burn-in policies. In addition, we have known what would make burn-in policies different, such as the consideration from decision makers, budgets, and the expectation from customers.

    摘要 i 誌謝 viii 表目錄 xi 圖目錄 xii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 研究範圍與限制 3 第四節 研究流程 5 第五節 論文架構 6 第二章 文獻探討 7 第一節 預燒測試相關議題 7 第二節 多目標規劃 15 第三節 多目標混合整數非線性規劃問題與求解 22 第四節 小結 23 第三章 多階段預燒測試多項政策模型 24 第一節 問題定義 24 第二節 多階段預燒與多項預燒項目搭配權重模型 33 第三節 多階段預燒與多項預燒項目優先目標規劃模型 45 第四節 小結 53 第四章 模型驗證與分析 54 第一節 情境簡介 54 第二節 個案資料說明 56 第三節 模型驗證 63 第四節 結果討論 68 第五節 敏感度分析 69 第六節 小結 87 第五章 結論與建議 89 第一節 結論 89 第二節 未來研究方向與建議 90 參考文獻 91

    中文文獻
    許志義,多目標決策,五南圖書出版公司,台北市,民國八十三年。
    陳虹如(2006),以多目標規劃方法求解供應鏈中數量彈性與成本之最佳化研究,
    碩士論文,國立成功大學工業與資訊管理學系碩士班。
    劉怡佳(2010),考量目標優先順序之供應鏈彈性與利潤最佳化研究,碩士論文,國立成功大學工業與資訊管理學系碩士班。
    王佩淳(2012),運用確定性全域最佳化方法求解工程與管理問題,博士論文,國立臺北科技大學工商管理研究所博士班。
    英文文獻
    Androulakis, I. P., Maranas, C. D. & Floudas, C. A. (1995) 'alpha BB: A global optimization method for general constrained nonconvex problems', Journal of Global Optimization, 7, 337-63.
    Bebbington, M., Lai, C. D. & Zitikis, R. (2007) 'Optimum burn-in time for a bathtub shaped failure distribution', Methodology and Computing in Applied Probability, 9, 1-20.
    Block, H. W. & Savits, T. H. (1997) 'Burn-in', Statistical Science, 12, 1-13.
    Borchers, B. & Mitchell, J. E. (1994) 'An Improved Branch-and-Bound Algorithm For Mixed-Integer Nonlinear Programs', Computers & Operations Research, 21, 359-67.
    Burer, S. & Letchford, A. N. (2012) 'Non-convex mixed-integer nonlinear programming: A survey', Surveys in Operations Research and Management Science, 17, 97-106.
    Cavalcante, C. a. V., Do Nascimento, T. G. & Lopes, R. S. (2016) 'Multi-Attribute Utility Theory Analysis For Burn-In Processes Combined With Replacement', Eksploatacja I Niezawodnosc-Maintenance and Reliability, 18, 599-605.
    Charnes, A. & Cooper, W. W. (1977) 'Goal programming and multiple objective optimizations: Part 1', European Journal of Operational Research, 1, 39-54.
    Cha, J. H. & Finkelstein, M. (2010) 'Burn-in by environmental shocks for two ordered subpopulations', European Journal of Operational Research, 206, 111-17.
    Cha, J. H. & Pulcini, G. (2016) 'Optimal burn-in procedure for mixed populations based on the device degradation process history', European Journal of Operational Research, 251, 988-98.
    Cohen, M. & Lee, H. (1988) 'Strategic analysis of integrated production-distribution systems: models and methods', Operations Research, 36, 216-28.
    Goicoechea, A., Hansen, D. & Duckstein, L. (1982) Multiobjective decision analysis with engineering and business applications, John Wiley & Sons Inc.
    Habibi-Kouchaksaraei, M., Paydar, M. M. & Asadi-Gangraj, E. (2018) 'Designing a bi-objective multi-echelon robust blood supply chain in a disaster', Applied Mathematical Modelling, 55, 583-99.
    Kim, K. O. & Kuo, W. (2009) 'Optimal burn-in for maximizing reliability of repairable non-series systems', European Journal of Operational Research, 193, 140-51.
    Kim, T. & Kuo, W. (1998) 'Optimal burn-in decision making', Quality and Reliability Engineering International, 14, 417-23.
    Kuo, W. & Kuo, Y. (1983) 'Facing The Headaches Of Early Failures - A State-Of-The-Art Review Of Burn-In Decisions', Proceedings of the IEEE, 71, 1257-66.
    Kuo, W., Chien, W. K. & Kim, T. (1998) 'Reliability, yield, and stress burn-in : a unified approach for microelectronics systems manufacturing & software development' Boston, Mass : Kluwer Academic Publishers
    Lee, P. H., Torng, C. C. & Lin, Y. C. (2011) 'Determination of the optimal accelerated burn-in time under Arrhenius-Lognormal distribution assumption', Applied Mathematical Modelling, 35, 4023-30.
    Mi, J. (1994) 'Maximization Of a Survival Probability And Its Application', Journal of Applied Probability, 31, 1026-33.
    Mi, J. (1996) 'Minimizing some cost functions related to both burn-in and field use', Operations Research, 44, 497-500.
    Pohl, E. A. & Dietrich, D. L. (1999) 'Optimal Stress Screening strategies for multi-component systems sold under warranty: The case of phase-type lifetimes', Annals of Operations Research, 91, 137-61.
    Ramirez-Marquez, J. E., Coit, D. W. & Konak, A. (2004) 'Redundancy allocation for series-parallel systems using a max-min approach', IIE Transactions, 36, 891-98.
    Shafiee, M., Finkelstein, M. & Zuo, M. J. (2013) 'Optimal burn-in and preventive maintenance warranty strategies with time-dependent maintenance costs', IIE Transactions, 45, 1024-33.
    Shen, S. H. & Chien, Y. H. (2004) 'Minimizing cost-functions related to both burn-in and field-operation under a generalized model', IEEE Transactions on Reliability, 53, 435-39.
    Sheu, S. H. & Chien, Y. H. (2005) 'Optimal burn-in time to minimize the cost for general repairable products sold under warranty', European Journal of Operational Research, 163, 445-61.
    Tamiz, M., Jones, D. & Romero, C. (1998) 'Goal programming for decision making: An overview of the current state-of-the-art', European Journal of Operational Research, 111, 569-81.
    Tong, S. H. & Yum, B. J. (2008) 'A dual burn-in policy for defect-tolerant memory products using the number of repairs as a quality indicator', Microelectronics Reliability, 48, 471-80.
    Tsai, C. C., Tseng, S. T. & Balakrishnan, N. (2011) 'Optimal Burn-In Policy for Highly Reliable Products Using Gamma Degradation Process', IEEE Transactions on Reliability, 60, 234-45.
    Tseng, S. T. & Peng, C. Y. (2004) 'Optimal burn-in policy by using an integrated Wiener process', IIE Transactions, 36, 1161-70.
    Wu, S. & Clements-Croome, D. (2007) 'Burn-in policies for products having dormant states', Reliability Engineering & System Safety, 92, 278-85.
    Xiang, Y. S., Coit, D. W. & Zhu, Z. C. (2016) 'A Multi-objective Joint Burn-in and Imperfect Condition-based Maintenance Model for Degradation-based Heterogeneous Populations', Quality and Reliability Engineering International, 32, 2739-50.
    Ye, Z. S., Tang, L. C. & Xie, M. (2011) 'A Burn-In Scheme Based on Percentiles of the Residual Life', Journal of Quality Technology, 43, 334-45.
    Ye, Z. S., Tang, L. C. & Xie, M. (2014) 'Bi-objective burn-in modeling and optimization', Annals of Operations Research, 212, 201-14.
    Ye, Z. S., Xie, M., Tang, L. C. & Shen, Y. (2012) 'Degradation-Based Burn-In Planning Under Competing Risks', Technometrics, 54, 159-68.
    Yu, H. F. & Yu, W. C. (2007) 'An optimal mixed policy of inspection and burn-in and the optimal production quantity', International Journal of Production Economics, 105, 483-91.
    Yu, S. W., Zheng, S. H., Gao, S. W. & Yang, J. (2017) 'A multi-objective decision model for investment in energy savings and emission reductions in coal mining', European Journal of Operational Research, 260, 335-47.
    Yuan, T. & Kuo, Y. (2010) 'Bayesian Analysis of Hazard Rate, Change Point, and Cost-Optimal Burn-In Time for Electronic Devices', IEEE Transactions on Reliability, 59, 132-38.
    Yun, W. Y., Lee, Y. W. & Ferreira, L. (2002) 'Optimal burn-in time under cumulative free replacement warranty', Reliability Engineering & System Safety, 78, 93-100.

    下載圖示 校內:2023-06-27公開
    校外:2023-06-27公開
    QR CODE