| 研究生: |
林彥伶 Lin, Yang-Ling |
|---|---|
| 論文名稱: |
NDPK-A 和SGK-1在人類母纖維細胞瘤所扮演的角色 The role of NDPK-A and SGK-1 in neuroblastoma |
| 指導教授: |
張玲
Chang, Christina Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 人類神經母細胞瘤 、核苷二磷酸激-A 、血清和醣皮質素調控激酶-1 、細胞存活 、賀爾蒙壓力 、高張壓力 |
| 外文關鍵詞: | neuroblastoma, NDPK-A, SGK-1, cell viability, hormonal stress, hypertonic stress |
| 相關次數: | 點閱:109 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類神經母細胞瘤是兒童中最常見的癌症之一,導因主要是神經細胞在發育時不正常的分化以及失調的死亡。處在惡性階段的神經母細胞瘤病人,發現其核苷二磷酸激-A (nucleoside diphosphate kinase A; NDPK-A)有放大和過度表現的現象。先前我們實驗室的研究結果發現核苷二磷酸激-A 的促進人類神經母細胞瘤癌的轉移且也的增進細胞的存活力。根據實驗室cDNA microarray的結果,NDPK-A可以增加血清和醣皮質素調控激酶-1 (serum-and glucocorticoid- regulated protein kinase-1; SGK-1) 在人類神經母細胞瘤細胞株NB69的表現。過去的研究發現在荷爾蒙或高張壓力環境下SGK-1具有促進細胞存活的能力。因此本研究的假說是NDPK-A在人類神經母細胞瘤中所促進細胞存活的能力是藉由影響SGK-1的表現來調控。在實驗過程中,我利用10uM濃度的人工合成的糖皮質素dexamethasone讓細胞處在荷爾蒙的壓力下三天,實驗結果顯示表現外生型NDPK-A的NB69細胞存活力相較於控制組增加了1.5-2倍。在高濃度的氯化鈉的高張壓力下,NDPK-AWT及NDPK-AS120G同樣也增加了1.5-2倍細胞存活力。然而,失去酵素活性的NDPK-AH118F卻喪失此 功能。當NB69細胞同時表現NDPK-A與SGK-1野生型或突變型時,在荷爾蒙壓力及高張壓力下不具激酶活性的SGK-1會抑制野生型NDPK-A所調控的細胞存活,而野生型或持續活化的SGK-1突變則無法。總結來說,在人類神經母細胞瘤中,NDPK-A經由SGK-1的路徑而促進細胞的存活。
Neuroblastoma is a common childhood cancer, due to neuronal differentiation arrest and deregulated cell death. Amplification and overexpression of nucleoside diphosphate kinase A (NDPK-A) has been detected in advanced neuroblastoma. Our laboratory previously demonstrated that NDPK-A promotes neuroblastoma metastasis in part by enhancing the survival of neuroblastoma cells. According to our cDNA microarray data, a high level of NDPK-A appears to up-regulate serum- and glucocorticoid-regulated protein kinase-1 (SGK-1) in human neuroblastoma NB69 cells. SGK-1 is known to play a role in promoting cell survival under hormonal and hypertonic stresses. In this study, therefore, we hypothesize that overexpression of NDPK-A, as detected in advanced neuroblastoma, increases the survival of neuroblastoma cells via SGK-1. When NB69-derived stable transfectants were under hormonal stress by treating with 10 μM dexamethasone for 72 h, a high level of ectopic NDPK-A increased cell viability by 1.5-2 folds, relative to the vector-transfected control. Under hypertonic stress when the cells were treated with high concentrations of NaCl for 72 h, both ectopic wild type NDPK-AWT and metastasis-associated NDPK-AS120G mutant increased cell viability by ~1.5 and 2 folds respectively. However, this was not the case for an enzymatically inactive NDPK-AH118F mutant. I further generated NB69-derived stable transfectants that co-expressed NDPK-A and SGK-1 variants. Under hypertonic and hormonal stresses, dominant negative and not the wild type or constitutively active SGK1 inhibited NDPK-A mediated cell survival. Our findings indicate that NDPK-A enhanced the viability of neuroblastoma cells via upregulating SGK-1.
1.Fung, M.M., Viveros, O.H. & O'Connor, D.T. Diseases of the adrenal medulla. Acta Physiol (Oxf) 192, 325-335 (2008).
2.Pisano, M. et al. Enhanced anti-tumor activity of a new curcumin-related compound against melanoma and neuroblastoma cells. Mol Cancer 9, 137.
3.Wolter, J., Angelini, P. & Irwin, M. p53 family: Therapeutic targets in neuroblastoma. Future Oncol 6, 429-444.
4.Gustafson, W.C. & Weiss, W.A. Myc proteins as therapeutic targets. Oncogene 29, 1249-1259.
5.Gilles, A.M., Presecan, E., Vonica, A. & Lascu, I. Nucleoside diphosphate kinase from human erythrocytes. Structural characterization of the two polypeptide chains responsible for heterogeneity of the hexameric enzyme. J Biol Chem 266, 8784-8789 (1991).
6.Steeg, P.S. et al. Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 80, 200-204 (1988).
7.Backer, J.M. et al. Chromosomal localization and nucleoside diphosphate kinase activity of human metastasis-suppressor genes NM23-1 and NM23-2. Oncogene 8, 497-502 (1993).
8.Almgren, M.A., Henriksson, K.C., Fujimoto, J. & Chang, C.L. Nucleoside diphosphate kinase A/nm23-H1 promotes metastasis of NB69-derived human neuroblastoma. Mol Cancer Res 2, 387-394 (2004).
9.Nakagawara, A. & Ohira, M. Comprehensive genomics linking between neural development and cancer: neuroblastoma as a model. Cancer Lett 204, 213-224 (2004).
10.Palmieri, D. et al. Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. J Natl Cancer Inst 97, 632-642 (2005).
11.Tee, Y.T., Chen, G.D., Lin, L.Y., Ko, J.L. & Wang, P.H. Nm23-H1: a metastasis-associated gene. Taiwan J Obstet Gynecol 45, 107-113 (2006).
12.Miele, M.E. et al. Suppression of human melanoma metastasis following introduction of chromosome 6 is independent of NME1 (Nm23). Clin Exp Metastasis 15, 259-265 (1997).
13.Che, G.W. et al. [Molecular mechanism of reversing metastatic phenotype in human high-metastatic large cell lung cancer cell line L9981 by nm23-H1]. Ai Zheng 24, 278-284 (2005).
14.Nie, Q. et al. [nm23-H1 gene inhibits lung cancer cell invasion through down-regulation of PKC signal pathway]. Zhonghua Zhong Liu Za Zhi 28, 334-336 (2006).
15.Lim, S., Lee, H.Y. & Lee, H. Inhibition of colonization and cell-matrix adhesion after nm23-H1 transfection of human prostate carcinoma cells. Cancer Lett 133, 143-149 (1998).
16.Leone, A. et al. Evidence for nm23 RNA overexpression, DNA amplification and mutation in aggressive childhood neuroblastomas. Oncogene 8, 855-865 (1993).
17.Hailat, N. et al. High levels of p19/nm23 protein in neuroblastoma are associated with advanced stage disease and with N-myc gene amplification. J Clin Invest 88, 341-345 (1991).
18.Oda, Y., Naka, T., Takeshita, M., Iwamoto, Y. & Tsuneyoshi, M. Comparison of histological changes and changes in nm23 and c-MET expression between primary and metastatic sites in osteosarcoma: a clinicopathologic and immunohistochemical study. Hum Pathol 31, 709-716 (2000).
19.Nakamori, S. et al. Expression of nucleoside diphosphate kinase/nm23 gene product in human pancreatic cancer: an association with lymph node metastasis and tumor invasion. Clin Exp Metastasis 11, 151-158 (1993).
20.Nakamori, S. et al. Clinicopathological features and prognostic significance of nucleoside diphosphate kinase/nm23 gene product in human pancreatic exocrine neoplasms. Int J Pancreatol 14, 125-133 (1993).
21.Chang, C.L. et al. Nm23-H1 mutation in neuroblastoma. Nature 370, 335-336 (1994).
22.MacDonald, N.J., Freije, J.M., Stracke, M.L., Manrow, R.E. & Steeg, P.S. Site-directed mutagenesis of nm23-H1. Mutation of proline 96 or serine 120 abrogates its motility inhibitory activity upon transfection into human breast carcinoma cells. J Biol Chem 271, 25107-25116 (1996).
23.Freije, J.M., Blay, P., MacDonald, N.J., Manrow, R.E. & Steeg, P.S. Site-directed mutation of Nm23-H1. Mutations lacking motility suppressive capacity upon transfection are deficient in histidine-dependent protein phosphotransferase pathways in vitro. J Biol Chem 272, 5525-5532 (1997).
24.Waldegger, S. et al. Genomic organization and chromosomal localization of the human SGK protein kinase gene. Genomics 51, 299-302 (1998).
25.Webster, M.K., Goya, L., Ge, Y., Maiyar, A.C. & Firestone, G.L. Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Mol Cell Biol 13, 2031-2040 (1993).
26.Loffing, J., Flores, S.Y. & Staub, O. Sgk kinases and their role in epithelial transport. Annu Rev Physiol 68, 461-490 (2006).
27.Bell, L.M. et al. Hyperosmotic stress stimulates promoter activity and regulates cellular utilization of the serum- and glucocorticoid-inducible protein kinase (Sgk) by a p38 MAPK-dependent pathway. J Biol Chem 275, 25262-25272 (2000).
28.Firestone, G.L., Giampaolo, J.R. & O'Keeffe, B.A. Stimulus-dependent regulation of serum and glucocorticoid inducible protein kinase (SGK) transcription, subcellular localization and enzymatic activity. Cell Physiol Biochem 13, 1-12 (2003).
29.Kobayashi, T. & Cohen, P. Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem J 339 ( Pt 2), 319-328 (1999).
30.Panchapakesan, U., Pollock, C. & Saad, S. Review article: importance of the kidney proximal tubular cells in thiazolidinedione-mediated sodium and water uptake. Nephrology (Carlton) 14, 298-301 (2009).
31.Hayashi, M. et al. BMK1 mediates growth factor-induced cell proliferation through direct cellular activation of serum and glucocorticoid-inducible kinase. J Biol Chem 276, 8631-8634 (2001).
32.Leong, M.L., Maiyar, A.C., Kim, B., O'Keeffe, B.A. & Firestone, G.L. Expression of the serum- and glucocorticoid-inducible protein kinase, Sgk, is a cell survival response to multiple types of environmental stress stimuli in mammary epithelial cells. J Biol Chem 278, 5871-5882 (2003).
33.Buse, P. et al. Cell cycle and hormonal control of nuclear-cytoplasmic localization of the serum- and glucocorticoid-inducible protein kinase, Sgk, in mammary tumor cells. A novel convergence point of anti-proliferative and proliferative cell signaling pathways. J Biol Chem 274, 7253-7263 (1999).
34.Maiyar, A.C., Leong, M.L. & Firestone, G.L. Importin-alpha mediates the regulated nuclear targeting of serum- and glucocorticoid-inducible protein kinase (Sgk) by recognition of a nuclear localization signal in the kinase central domain. Mol Biol Cell 14, 1221-1239 (2003).
35.Hong, F. et al. mTOR-raptor binds and activates SGK1 to regulate p27 phosphorylation. Mol Cell 30, 701-711 (2008).
36.Wang, M., Zhang, X., Zhao, H., Wang, Q. & Pan, Y. FoxO gene family evolution in vertebrates. BMC Evol Biol 9, 222 (2009).
37.Ogino, S. et al. Cytoplasmic localization of p27 (cyclin-dependent kinase inhibitor 1B/KIP1) in colorectal cancer: inverse correlations with nuclear p27 loss, microsatellite instability, and CpG island methylator phenotype. Hum Pathol 38, 585-592 (2007).
38.Accili, D. & Arden, K.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421-426 (2004).
39.Kim, M.J. et al. Negative regulation of SEK1 signaling by serum- and glucocorticoid-inducible protein kinase 1. EMBO J 26, 3075-3085 (2007).
40.Shanmugam, I. et al. Serum/glucocorticoid-induced protein kinase-1 facilitates androgen receptor-dependent cell survival. Cell Death Differ 14, 2085-2094 (2007).
41.Dmitrieva, N.I., Michea, L.F., Rocha, G.M. & Burg, M.B. Cell cycle delay and apoptosis in response to osmotic stress. Comp Biochem Physiol A Mol Integr Physiol 130, 411-420 (2001).
42.Matthews, C.C. & Feldman, E.L. Insulin-like growth factor I rescues SH-SY5Y human neuroblastoma cells from hyperosmotic induced programmed cell death. J Cell Physiol 166, 323-331 (1996).
43.Itani, O.A., Liu, K.Z., Cornish, K.L., Campbell, J.R. & Thomas, C.P. Glucocorticoids stimulate human sgk1 gene expression by activation of a GRE in its 5'-flanking region. Am J Physiol Endocrinol Metab 283, E971-979 (2002).
44.Tazik, S. et al. Comparative neuroprotective effects of rasagiline and aminoindan with selegiline on dexamethasone-induced brain cell apoptosis. Neurotox Res 15, 284-290 (2009).