| 研究生: |
陳佑宗 Chen, Yu-Tsung |
|---|---|
| 論文名稱: |
質環上的導算合成 Compositions of derivations in prime rings |
| 指導教授: |
柯文峰
Ke, Wen-Fong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 22 |
| 中文關鍵詞: | 質環 、導算 、Posner定理 |
| 外文關鍵詞: | prime rings, derivations, Posner’s theorems |
| 相關次數: | 點閱:149 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文裡,我們回顧Posner的兩個定理,並討論它們的推廣。第一定理敘述,在特徵數不為二的質環上,如果兩個導算的合成是一個導算,那個這兩個導算的其中之一必定為零。第二定理描述,如果d是在質環R上的一個非零導算,使得在R上的所有元素x滿足交換子xd(x)-d(x)x屬於R的中心,那麼R是可交換的。
In this thesis, we review two well-known theorems of E. C. Posner and their generalizations. The first of the two asserts that if the product of two derivations on a prime ring of characteristic not two is a derivation, then one of the derivations must be zero, and the second says that if d is a nonzero derivation on a prime ring R such that the commutator xd(x)−d(x)x is in the center of R for all x in R, then R is commutative.
[1] A. S. Amitsur and J. Levitzki, Minimal identities for algebras, Proc. Amer. Math. Soc. 1, no. 4, 449–463, 1950.
[2] R. Awtar, On a theorem of Posner, Proc. Camb. Phil. Soc. 73, no. 4 , 25–27, 1973.
[3] R. Awtar, Lie and Jordan structure in prime rings with derivations, Proc. Amer. Math. Soc. 41, no. 1, 67–74, 1973.
[4] M. Ahmad, On a theorem of Posner, Proc. Amer. Math. Soc. 66, no. 1, 13–16, 1977.
[5] J. Bergen, Prime Rings and Derivations, Ph. D. thesis, Univ. of Chicago, 1981.
[6] J. Bergen, I. N. Herstein and J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71, no. 1, 259–267, 1981.
[7] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with Generalized Identities, New York-Basel-Hong Kong, Marcel Dekker, Inc., 1996.
[8] C. L. Chuang, On compositions of derivations of prime rings, Proc. Amer. Math. Soc. 108, no. 3, 647–652, 1990.
[9] M. A. Chebotar and P. H. Lee, A Note on Compositions of Derivations of Prime Rings, Comm. in Algebra 31, no. 6, 2965–2969, 2003.
[10] I. N. Herstein, Noncommutative rings, The Carus Mathematical Monographs, Math. Assoc. of Amer, Washington D. C., 1968.
[11] I. N. Herstein, Rings with involution, Univ. of Chicago Press, Chicago, 1976.
[12] Y. Hirano, H. Tominaga and A. Trzepizur, On a theorem of Posner, Math. J. Okayama Univ. 27, no. 1, 25–32, 1985.
[13] V. K. Kharchenko, Di erential identities of prime rings, Algebra and Logic 17, no. 2, 155–168, 1978.
[14] W. F. Ke, On derivations of prime rings of characteristic 2, Chinese J. Math. 13, no. 4, 273–290, 1985.
[15] C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Paci c J. Math. 42, no. 1, 117–136, 1972.
[16] P. H. Lee and T. K. Lee, Lie ideals of prime rings with derivations, Bull. Inst. of Math. Acad. Sinica 11, no. 1, 75–80, 1983.
[17] C. Lanski, Di erential identities, Lie ideals, and Posner's theorems, Paci c J. Math. 134, no. 2, 275–297, 1988.
[18] C. Lanski, Di erential identities of prime rings, Kharchenko's theorem and applications, Contemporary Math. 124, 111–128, 1992.
[19] M. Mathieu, Posner's second theorem deduced from the first, Proc. Amer. Math. Soc. 114, no. 3, 601–602, 1992.
[20] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8, no. 6, 1093–1100, 1957.