簡易檢索 / 詳目顯示

研究生: 陳貞儒
Chen, Jen-ru
論文名稱: Acarviosyl Transferase之結構與酵素活性研究
Structure and Enzymatic Activity Analysis of Acarviosyl Transferase
指導教授: 蕭世裕
Shaw, Shyh-yu
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 72
中文關鍵詞: α-澱粉酶放射線菌轉換酶糖祿錠
外文關鍵詞: transferase, Glucobay, Actinoplanes, α-amylase
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 糖祿錠(acarbose)是α-glucosidase的抑制劑,廣泛用於第二型糖尿病的治療,acarbose主要結構含有acarviosine與maltose。ATase酵素(Acarviosyl transferase)不受acarbose抑制,可將acarviosine切下,並以α-(1,4) 鍵結轉至另個糖類分子上,是唯一具有此功能的轉糖酶。因此針對此催化特性,本研究之目的包括:(i)利用ATase提高糖祿錠在發酵液的產率。(ii)探討ATase之催化機制。(iii)表現基因重組ATase以提供X-ray結晶學研究。經由利用ATase與放射線菌發酵液作用,可轉換acarviosine至glucose與salicin上,唯使用maltose做為接受者時,acarbose產量無明顯增加。我們再以大腸桿菌表現融合蛋白ZZ-ATase,探討ZZ domain對於ATase功能之影響。除去ZZ domain的ATase對受質對acarbose之動力學常數為Km= 0.85 mM與Vmax為0.21 mM/hr,與ZZ-ATase酵素對acarbose之動力學常數Km=0.86 mM,Vmax=0.24 mM/hr比較,顯示ZZ domain對ATase酵素活性影響並不大。
    進一步為解出ATase與其受質(acarbose)之複合體結構,以定點突變方法生產出突變株ATase (E435Q),以降低其催化活性。實驗結果顯示E435Q之催化活性與ATase比較,只剩約4%之活性。解開ATase (E435Q)與Acarbose之複合體結構是探討ATase催化機制之重要步驟。

    sp. fermentation broth to increase the yield of acarbose, (ii) to study the catalytic mechanism of ATase, and (iii) to express recombinant ATase for X-ray crystallography study.
    In our study, ATase transfer the acarviosine group from the acarbose analogues to glucose or salicin but not maltose. We have expressed the fusion protein ZZ-ATase in E.coli BL21(DE3) strain. The ZZ domain is added to facilitate the purification and thrombin cleavage site was also engineered into the linker between ZZ and ATase to remove the ZZ domain after purification. Comparison of the kinetics parameters of ZZATase (Km=0.86 mM and Vmax=0.24 mM/hr) and ATase (Km=0.85 and Vmax=0.21 mM/hr) showed the ZZ domain didn’t interfere the catalytic activity of ATase. We designed a mutant of ATase, named E435Q, to reduce its catalytic efficiency but it will not affect its affinity with acarbose. Enzymatic analysis of the E435Q mutant revealed that the catalytic activity of the mutant was decreased to about 4% of the ATase. The mutant will be used for co-crystallization study.

    中文摘要 I 英文摘要 II 目錄 III 表目錄 VII 圖目錄 VIII 附圖目錄 X 一、前言 1 二、文獻回顧 3 2-1糖尿病簡介 3 2-1-1市售糖尿病藥物簡介 3 2-1-2市售糖尿病藥物-糖祿錠(Glucobay) 5 2-1-3糖祿錠(Glucobay)的微生物生合成路徑 6 2-1-4糖祿錠(Glucobay)製程以及純化 6 2-2糖祿錠生合成酵素 AcbD 基因 8 2-2-1Acarviosyl transferase (ATase)轉糖酶選殖 8 2-2-2Acarviosyl transferase (ATase)催化模式 9 2-3澱粉水解酵素簡介10 2-3-1澱粉水解酵素分類 10 2-3-2α型澱粉水解酵素家族(α-amylase family) 概念 10 2-3-3α型澱粉水解酵素家族(α-amylase family)之結構相似性 11 2-3-4α型澱粉水解酵素家族(α-amylase family)催化機制 11 三、材料與方法 13 3-1材料 13 3-2常用配方 15 3-3儀器 16 3-4構築pZZthromATase(設計蛋白酶Thrombin切割序列) 17 3-5表現酵素ZZ-ATase以及ZZ-throm-ATase 17 3-6純化酵素ZZ-ATase以及ZZ-throm-ATase 18 3-7以Thrombin切割ZZ-throm-ATase酵素 19 3-8 HPLC法分析acarbose及其他糖類 19 3-9測量酵素活性 19 3-10測驗可溶性ZZ-throm-ATase與破菌沉澱物(pellet)之活性 19 3-11測驗acarviosyl-glucose吸光值以及分子量 20 3-12測驗酵素動力學常數 20 3-13定點突變ATase (E435Q) 21 3-14測驗ZZ-throm-ATase之E435Q mutant活性 22 3-15結構分析Acarviosyl transferase (ATase) 22 3-16測驗放射線菌發酵液中糖祿錠濃度 22 四、結果 24 4-1 酵素純化與分離 24 4-1-1 ZZ-ATase酵素純化 24 4-1-2 ZZ-throm-ATase酵素純化 24 4-1-3 以Thrombin切割ZZ-throm-ATase酵素 25 4-2 酵素活性分析與酵素動力學常數 25 4-2-1 酵素催化比活性與酵素動力學常數 26 4-2-2最適化反應條件 26 4-2-3 ATase(E435Q) mutant酵素 27 4-3 增加放射線菌發酵液糖祿錠產量 27 4-3-1 acarviosyl-glucose特性 27 五、討論 29 5-1 ATase酵素活性之探討 29 5-2 ZZ-ATase之催化能力探討 29 5-3 ATase催化之模式探討 30 5-4 ATase應用於放射線菌發酵液以增加產量 33 六、參考文獻 68

    1. Chiba, S. Molecular mechanism in α-glucosidase and glucoamylase. Biosci. Biotechnol. Biochem. 1997, 61:1233-1239.
    2. Stam, M. R., Danchin, E. G. J., Rancurel, C., Coutinho, P. M., Henrissat, B. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng. Des. Sel. 2006, 19:555-562.
    3. Fortia, A., Garciab, E. G., Yuc, M. B., Jimenezd, M. C., Brodowsd, R. G., Oliveira, J. H. Efficacy and safety of exenatide administered before the two largest daily meals of Latin American patients with type 2 diabetes. Curr. Med. Res. Opin. 2008, 24.
    4. Guagnano, M. T., Pace, P. V., Manigrasso, M. R., Merlitti, D., Soto Parra, H. M., Sensi, S. Non insulin-dependent diabetes mellitus (type 2) secondary failure. Metformin-glibenclamide treatment. Int. J. Immunopathol. Pharmacol. 2001, 14.
    5. Adolfo, A. C., Jaime, B. J., Ren, C. V. α-glucosidase-inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes. J. Ethnopharmacol. 2008, 116:27-32.
    6. Subramanian, R., Asmawi, M. Z., Sadikun, A. In vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim. Pol. 2008, 55.
    7. Harrigan, R. A., Nathan, M. S., Beattie, P. Oral agents for the treatment of type 2 diabetes mellitus: Pharmacology, toxicity, and treatment. Ann. Emerg. Med. 2001, 38:68-78.
    8. Gavin, J. R., Reducing Global Cardiovascular Risk in Patients With Type 2 Diabetes Mellitus. J. Am. Osteopath. Assoc. 2008, 108:S14-19.
    9. Truscheit, E., Frommer, W., Junge, B., Muller, L., Schmidt, D. D., Wingender, W. Chemistry and biochemistry of microbial a-glucosidase inhibitors. Angew. Chem. Int. Edit. 1981, 20:744-761.
    10. Kandra, L., Remenyik, J., Batta, G., Somsak, L., Gyemant, G., Park, K. H. Enzymatic synthesis of a new inhibitor of alpha-amylases : acarviosinyl-isomaltosyl-spiro-thiohydantoin. Carbohydr. Res. 2005, 340:1311–1317.
    11. Mooradian, A. D., Thurman, J. E. Drug therapy of postprandial hyperglycaemia. Drugs 1999, 57:19-29.
    12. Schmidt, D. D., Frommer,W., Junge, B., Muller, L., Wingender, W., Truscheit, E. α-glucosidase inhibitors. Naturwissenschaften 1977, 64.
    13. Brzozowski, A. M., Davies, G. J. Structure of the Aspergillus oryzae alpha-amylase complexed with the inhibitor acarbose at 2.0 Å resolution. Biochemistry 1997, 36:10837-10845.
    14. Shibaoka, T., Miyano, K., Watanabe, T. The number of subsites in the active site of saccharifying α-amylase from Bacillus subtilis. J. Biochem. 1974, 74:475-479.
    15. Kandraa, L., Gyemanta, G., Remenyikb, J., Ragunathc, C., Ramasubbuc, N. Subsite mapping of human salivary alpha-amylase and the mutant Y151M. FEBS 2003, 544:194-198.
    16. Mishra, P. J., Ragunath, C., Ramasubbu, N. The mechanism of salivary amylase hydrolysis: role of residues at subsite S2 . Biochem. Biophys. Res. Commun. 2002, 292:468–473.
    17. Wehmeier, U. F. The biosynthesis and metabolism of acarbose in Actinoplanes sp. SE 50/110: A progress report. Biocatal. Biotransform. 2003, 21:279-284.
    18. Stratmann, A., Mahmud, T., Lee, S., Distler, J., Floss, H. G., Piepersberg, W. The AcbC protein from Actinoplanes species is a C7-cyclitol synthase related to 3-dehydroquinate synthases and Is involved in the biosynthesis of the a-glucosidase inhibitor acarbose. J. Biol. Chem. 1999, 274:10889–10896.
    19. Zhang, C. S., Stratmann, A., Block, O., Bruckner, R., Podeschwa, M., Altenbach, H., J., Wehmeier, U. F., Piepersberg, W. Biosynthesis of the C7-cyclitol moiety of acarbose in Actinoplanes species SE50/110. J. Biol. Chem. 2002, 277:22853–22862.
    20. Piepersberg, W., Wehmeier , U. F. Biotechnology and molecular biology of the α-glucosidase inhibitor acarbose. Appl. Microbiol. Biotechnol. 2004, 63:613–625.
    21. Choi, B. T., Shin, C. S. Reduced formation of byproduct component C in acarbose fermentation by Actinoplanes sp. CKD485-16. Biotechnol. Prog. 2003, 19:1677-1682.
    22. Hemker, M., Stratmann, A., Goeke, K., Schroder, K., Lenz, U., Piepersberg, W., Pape, H. Identification, cloning, expression, and characterization of the extracellular acarbose-modifying glycosyltransferase, AcbD, from Actinoplanes sp. Strain SE50. J. Bacteriol. 2001, 183:4484–4492.
    23. Kim, T. J., Kim, M. J., Kim, B. C., Kim, J. C., Cheong, T. K., Kim, J. W., Park, K. H. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a thermus strain. Appl. Environ. Microbiol. 1999, 65:1644-1651.
    24. Cha, H. J., Yoon, H. G., Kim, Y. W., Lee, H. S., KIM, J. W., Kweon, K. S., Oh, B. H., Park, K. H. Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur J Biochem 1998, 253:251-262
    25. Withers. SG: Mechanisms of glycosyl transferases and hydrolases. Carbohydr. Polym. 2001, 44:325–337.
    26. Biwer, A., Antranikian, G., Heinzle, E. Enzymatic production of cyclodextrins. Appl. Microbiol. Biotechnol. 2002, 59:609–617.
    27. Brayer, G. D., Sidhu, G., Maurus, R., Rydberg, E. H., Braun, C., Wang, Y., Nguyen, N. T., Overall, C. M., Withers, S. G. Subsite mapping of the human pancreatic alpha-amylase active site through structural, kinetic, and mutagenesis techniques. Biochemistry 2000, 39:4778-4791.
    28. Qian, M., Haser, R., Payan, F. Structure and molecular model refinement of pig pancreatic α-amylase at at 2.1 Å resolution. J. Mol. Biol. 1993, 231:785-799.
    29. Brady, R. L., Brzozowski, A. M., Derewenda, Z. S., Dodson, E. J., Dodson, G. G. Solution of the structure of Aspergillus niger acid alpha-amylase by combined molecular replacement and multiple isomorphous replacement methods. Acta. Crystallogr. Sect. B. Struct. Sci. 1991, 47:527-535.
    30. Swift, H. J., Brady, L., Derewenda, Z. S., Dodson, E. J., Dodson, G. G., Turkenburg, J. P., Wilkinson, A. J. Structure and molecular model refinement of Aspergillus oryzae (TAKA) alpha-amylase: an application of the simulated-annealing method. Acta. Crystallogr. Sect. B. Struct. Sci. 1991, 47:535-544.
    31. Qian, M., Haser, R., Buisson, G., Duce, E., Payan, F. The active center of a mammalian alpha-amylase. Structure of the complex of a pancreatic a-amylase with a carbohydrate inhibitor refined to 2.2-Å resolution. Biochemistry 1994, 33:6284-6294.
    32. Koshland, D. E. Stereochemistry and the mechanism of enzymatic reactions. Biol Rev 1953, 28:416-436.
    33. Nuria, G. M., Elena, G. F., Antonio, V. Recombinant protein solubility[mdash]does more mean better? Nat. Biotech. 2007, 25:718-720.
    34. Brockelbank, J. A., Peters, V., Rehm, B. H. A. Recombinant Escherichia coli strain produces a ZZ Domain displaying biopolyester granules suitable for immunoglobulin G purification. Appl. Environ. Microbiol. 2006, 72:7394-7397.
    35. Strokopytov, B., Penninga, D., Rozeboom, H. J., Kalk, K. H., Dijkhuizen, L., Dijkstra, B. W. X-ray structure of cyclodextrin glycosyltransferase complexed with acarbose. Implications for the catalytic mechanism of glycosidases. Biochemistry 1995, 34:2234-2240.
    36. Strokopytov, B., Knegtel, R. M. A., Penninga, D., Rozeboom, H. J., Kalk, H. K., Dijkhuizen, L., Dijkstra, B. W. Structure of cyclodextrin glycosyltransferase complexed with a maltononaose inhibitor at 2.6 Å resolution. implications for product specificity. Biochemistry 1996, 35:4241-4249.
    37. Leemhuis, H., Wehmeier, U. F., Dijkhuizen, L. Single Amino Acid Mutations Interchange the Reaction Specificities of Cyclodextrin Glycosyltransferase and the Acarbose-Modifying Enzyme Acarviosyl Transferase. Biochemistry 2004, 43:13204-13213.
    38. Li, C., Begum, A., Numao, S., Park, K. H., Withers, S. G., Brayer, G. D. Acarbose rearrangement mechanism implied by the kinetic and structural analysis of human pancreatic α-amylase in complex with analogues and their elongated counterparts. Biochemistry 2005, 44:3347-3357.
    39. Ishizuka, Y., Sakano, Y., Kobayashi, T. Subsite structure and mode of action of native and modified α-amylase from porcine pancreas. Agric. Biol. Chem. 1986, 50:3019-3023.
    40. Veen. B. A., Uitdehaag, J. C. M., Penninga, D., Alebeek, G. J. W. , Smith, L. M., Dijkstra, B.W., Dijkhuizen, L. Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase a-cyclodextrin production. J. Mol. Biol. 2000, 296:1027-1038.
    41. Nakamura, A., Haga, K., Yamane, K. Three histidine residues in the active center of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 101 1: Effects of the replacement on pH dependence and transition-state stabilization. Biochemistry 1993, 32:6624-6631.

    下載圖示 校內:2009-08-21公開
    校外:2009-08-21公開
    QR CODE