| 研究生: |
王士瑋 Wang, Shih-Wei |
|---|---|
| 論文名稱: |
熱機處理對Ti-7.5Mo合金機械性質之影響 Effect of thermomechanical treatment on mechanical properties of Ti-7.5Mo alloy |
| 指導教授: |
陳瑾惠
Chen, Jiin-Huey 朱建平 Ju, Chien-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 鈦鉬合金 、α |
| 外文關鍵詞: | Ti-Mo alloy, α |
| 相關次數: | 點閱:115 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗中,對於鑄造後為α"相之Ti-7.5Mo合金進行不同熱機處理,主要目的為保持高延性、高強度及較低的彈性模數。實驗分成三個部分討論:第一部分為強化處理條件A。第二部分為強化處理條件B。第三部分為強化處理條件C。均質處理條件下有降伏強度470MPa、拉伸強度870MPa、延性27%、彈性模數68GPa,結晶結構為α"相。強化處理條件A3,降伏強度為856MPa,拉伸強度為1135MPa,延性11.4%,彈性模數62GPa,結晶結構為α'相。強化處理條件B3有優異的機械性質組合,降伏強度900MPa,拉伸強度1147MPa,延性21.6%,彈性模數63GPa,結晶結構為α'相。強化處理條件C1有最佳的機械性質組合。降伏強度1013MPa、拉伸強度1193MPa、延性有14.6%,較低彈性模數65.5GPa,結晶結構為α'相。
In this study, cast α" phase Ti-7.5Mo alloy processed different thermomechanical treatment, expect to maintain high ductility, high mechanical strength and lower tensile elastic modulus as the main purpose. The experiment is divided into three parts: The first part is strengthen condition A. The second part is strengthen condition B. The third part is strengthen condition C.
Homogenized treatment condition has yield strength 470MPa, tensile strength 870MPa, ductility 27%, and tensile elastic modulus 68GPa, and its crystal structure is α" phase. Strengthen condition A3, its yield strength 856MPa, tensile strength 1135MPa, ductility only 11.4% and tensile elastic modulus 62GPa, and its crystal structure is α' phase. Strengthen condition B3, it has outstanding combination of mechanical properties, yield strength 900MPa, tensile strength 1147MPa, ductility 21.6%, and tensile elastic modulus 63GPa, and its crystal structure is α' phase. Strengthen condition C1, which has the best combination of mechanical properties, yield strength 1013MPa, tensile strength 1193MPa, ductility 14.6%, and lower tensile elastic modulus 65.5GPa, and its crystal structure is α' phase.
1.Blackburn MJ. and Williams JC., “Phase transformation in Ti-Mo and Ti-V alloys”, Trans Metal Soc AIME, 242:2461-9, 1968.
2.Bania PJ., “Beta titanium alloys and their role in the titanium industry”, In: Eylon D., Boyer R., Koss D., editors. Beta titanium alloys in the 1990's. Warrendale, PA: TMS, p. 3-14, 1993.
3.Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th Annual International Biomaterial Symposium, April 20-24, 1974.
4.Donachie Jr. M. J., Titanium A Technical Guide, ASM International, Metal Park Ohio, 1989.
5.Damon Kent, Gui Wang, Zhentao Yu, Xiqun Ma, Matthew Dargusch, “Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique”, Journal of the mechanical behavior of biomedical materials 4 405–416, 2011.
6.Fedotov SG., “Peculiarities of Changes in Elastic Properties of Ti Martensite”, Titanium Science and Technology, 2:871-81, 1973.
7.Furuhara. T, Maki. T., Makino. T. “Microstructure control by thermomechanical processing in β-Ti-15-3 alloy”, Journal of Materials Processing Technology, 117, 318-323, 2001.
8.F. Sun, F. Prima, T. Gloriant, “High-strength nanostructured Ti–12Mo alloy from ductile metastable beta state precursor”, Materials Science and Engineering A 527 4262–4269, 2010.
9.Han-Sol Kim, Sung-Hwan Lim, In-Dong Yeo, Won-Yong Kim, “Stress-induced martensitic transformation of metastable β-titanium alloy”, Materials Science and Engineering A 449–451 322–325, 2007.
10.H. Nasiri-Abarbekoh, A. Ekrami, A.A. Ziaei-Moayyed, M. Shohani, “Effects of rolling reduction on mechanical properties anisotropy of commercially pure titanium”, Materials and Design 34 268–274, 2012.
11.Liqiang Wang, Weijie Lu, Jining Qin, Fan Zhang, Di Zhang, “Influence of cold deformation on martensite transformation and mechanical properties of Ti–Nb–Ta–Zr alloy”, Journal of Alloys and Compounds 469 512–518, 2009.
12.Smith WF., “Structure and Properties of Engineering Alloys”, McGraw-Hill, Inc., USA, 433-484, 1993.
13.“Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNSR56401)”, ASTM International, 2010.
14.W.F. Ho, C.P. Ju, J.H. Chern Lin, “Structure and properties of cast binary Ti-Mo alloys”, Biomaterials, 20:2115-22, 1999.
15.Y.L. Zhou, M. Niinomi, T. Akahori, “Decomposition of martensite α” during aging treatment and resulting mechanical properties of Ti-Ta alloys”, Materials Science and Engineering A, 371, 283-290, 2004.
16.Yoshito Takemoto, Ichiro Shimizu, Akira Sakakibara, Moritaka Hida, Yoshikazu Mantani, “Tensile Behavior and Cold Workability of Ti-Mo Alloys”, Materials Transactions, Vol. 45, No. 5 1571–1576, 2004.