簡易檢索 / 詳目顯示

研究生: 黃郁晴
Huang, Yu-Ching
論文名稱: 波浪對河口沉積過程影響之數值研究
A Field and Numerical Investigation of Wave Influences on River-Mouth Depositional Process
指導教授: 陳佳琳
Chen, Jia-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 72
中文關鍵詞: 曾文溪口數值模擬NearCOM-TVD河口漂沙趨勢
外文關鍵詞: estuary, wave current interaction, sediment transport, morphological evolution
相關次數: 點閱:121下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 曾文溪麻善大橋以下河段為感潮河段,河口與鄰近海域的水理與輸沙行為十分複雜,河川之供沙量與外海波、潮流推移形成之交互作用,亦是影響河口與鄰近海域漂沙與地形變化之主要因子。本研究綜合上述可能影響曾文溪河川輸沙行為之因子,以開源數值模式NearCOM-TVD,模擬各因子對河口海域地形之影響;本研究使用2018年11月及2019年8月、9月於曾文溪口之漂沙觀測資料,用以率定東北季風及西南季風作用下,曾文溪出海口段濁度變化及其漂沙趨勢,輔以流速、流向與水深地形之觀測數據,解析漂沙方向與其分佈之趨勢。
    本研究著重於探討曾文溪口河海堤銜接段及出海口右岸侵淤特性,採用2018年東北季風(11月21日~28日)及2019年西南季風(8月22日~9月4日)作用下,於曾文溪口實測時序列資料,包含波、潮流及漂沙資料,作為模式驗證,結果顯示模式有良好之率定結果。並展繪河口流場、波場及波流交互作用下之漂沙趨勢,探討冬、夏季不同季節之優勢漂沙方向。另由河口實測波向顯示,波向於冬、夏季皆由西南向東北方入射居多,由此可推測曾文溪口受地形遮蔽影響。由模擬冬季期間淨輸沙率輸送趨勢可看出,於河口位水深約2~3公尺處及出海口右岸轉彎段處有較大量級之輸沙趨勢,模擬結果顯示於出海口右岸轉彎段處有一微幅侵蝕之趨勢,此模擬結果與長期觀測之地形變遷相呼應。

    Understanding hydrodynamics and sediment transport in estuaries and the adjacent coastal area is critical but challenging owing to the highly nonlinear interaction among tides, waves, and bathymetry. Locally intense circulations can be generated under the interaction of tidal currents wave-induced currents and complex bathymetry. In the past decades, evidences of seabed erosion near the Zengwen river mouth has raised concerns regarding coastal resilience. A diagnostic study combing field and numerical methods is carried out in order to understand the dominant mechanisms causing the resulting complex flow pattern and sediment transport. An array of co-located wave gauges, ADCPs, and turbidity meters were deployed throughout the channels and ebb tidal shoals to obtain the time series and spatial distribution of hydrodynamic and sediment transport conditions at the river mouth in winter of 2018 (21 - 28 November) and in summer of 2019 (22 Aug to 4 Sep). A quasi-3D nearshore community model is applied for the integrated observational and modeling study. NearCoM-TVD, couples SWAN and SHORECIRC, reproduces water levels, waves, currents observed at the river mouth reasonably well. Model results are used to provide insights into the patterns of flow residual for a range of spring-neap tidal forcing and wave conditions over the complex bathymetry. Both observed and simulated residual sediment transport patterns demonstrate that the transport process is dominated by interaction of ebb tidal jet and wave induced longshore current during low to moderate flow conditions. The southward residual transport causes erosion at the northern part of river mouth and accretion in the ebb tidal shoals around the center of the river mouth.

    摘要 I Abstract II 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻探討 3 1.3 基本資料蒐集 9 1.3.1 研究範圍介紹 9 1.3.2 基本資料蒐集與分析 11 1.4 本文架構 19 第二章 研究方法 20 2.1 現場調查 20 2.1.1 漂沙及波潮流現場調查 20 2.2 數值模式NearCOM-TVD概論 25 2.3 模式率定之誤差計算參數 31 第三章 結果與討論 32 3.1 冬季期間河口波流場模擬 32 3.1.1 模式搭建 32 3.1.2 模式率定 37 3.1.3 模式結果與觀測資料率定成果 42 3.1.4 河口波流場模擬 42 3.2 夏季期間河口波流場模擬 45 3.2.1 模式搭建 45 3.2.2 模式率定 47 3.2.3 模式結果與觀測資料率定成果 54 3.2.4 河口波流場模擬 55 3.3 河口波流交互作用綜合討論 57 3.3.1 近岸波流場模擬(冬季) 57 3.3.2 近岸波流場模擬(夏季) 59 3.4 河口濁度及模擬結果討論 60 第四章 結論與建議 64 4.1 結論 64 4.2 建議 65 參考文獻 66 附錄一 71

    1. 石再添(1979)「台灣西南部嘉南洲瀉海岸地形及其演變」,國立臺灣師範大學地理學系地理研究報告,5,11-48。
    2. 石再添(1980)「台灣西部海岸線的演變及海埔地的開發」,國立臺灣師範大學地理學系地理研究報告,6,1-36。
    3. 林宗儀(1997)「頂頭額汕南北兩側之漂沙活動與海岸作用差異」,第19屆海洋工程研討會論文集,547-552。
    4. 交通部運輸研究所(2020),「2018年港灣海氣象觀測資料統計年報」。
    5. 吳基、林受勳、徐如娟、何良勝(2007)「南北二國內商港海象環境特性比較」,第29屆海洋工程研討會論文,135-140。
    6. 邵廣昭(1999),「曾文溪口海岸地區陸海交互作用之研究」,全球變遷通訊雜誌,21,10-21。
    7. 洪奕星、蔡政翰、歐俊宏、曾信勝、遲建業(1995)「曾文溪三角洲海域季節性沉積物之傳輸」,第17屆海洋工程研討會暨1995兩岸港口及海岸開發研討會論文集,1327-1343。
    8. 財團法人成大水利海洋研究發展文教基金會(2016),「台南海岸環境營造規劃及氣候變遷因應研究(2/2)」,經濟部水利署第六河川局,1-1~9-47。
    9. 財團法人成大水利海洋研究發展文教基金會(2019),「曾文溪輸砂對鄰近海岸砂源補充監測」,經濟部水利署第六河川局,1-1~8-6。
    10. 財團法人成大研究發展基金會(2007),「海岸生態工法研究-生態性海堤之研究(1/3)」,經濟部水利署第六河川局,1-1~6-3。
    11. 財團法人成大研究發展基金會(2012),「曾文溪泥沙供應海岸漂沙源改善之研究」,經濟部水利署第六河川局,1-1~8-4。
    12. 國立成功大學(2016),「曾文溪河口輸砂對鄰近海岸之影響評估(1/2)」,經濟部水利署第六河川局,1-1~7-51。
    13. 國立成功大學(2017),「曾文溪河口輸砂對鄰近海岸之影響評估(2/2)」,經濟部水利署第六河川局,1-1~7-8。
    14. 溫進丁、羅俊雄、詹森、江文山、陳怡發、林宗儀(1997),「台南市城西里近岸遊憩海埔地環境背景資料調查」,台南水工試驗所研究試驗報告第194號。
    15. 張瑞津、石再添、陳翰霖(1997)「台灣西南部台南海岸平原地形變遷研究」,中國地質學會86年年會論文摘要,31-36。
    16. 詹森、江文山(1997)「台灣西南海岸頂頭額汕南北兩側海象之差異」,第19屆海洋工程研討會論文集,461-468。
    17. 經濟部水利署(1968至2018),「臺灣水文年報」。
    18. 劉祖乾、黃炯賢、錢正明(1996)「曾文溪河口海岸帶之沈積型態及海岸變遷」,環境影響評估技術研討-海岸地區保育與開發之研討會論文集,18-30。
    19. 羅聖宗(1995),「布袋至安平外海海底地形特徵」,第17屆海洋工程研討會暨1995兩岸港口及海岸開發研討會論文集,1397-1409。
    20. 蘇青和、吳基、徐如娟、林受勳(2002)「安平港港口區域潮汐及海流特性研究」,第24屆海洋工程研討會論文集,1-8。
    21. Booij, Ris, and Holthuijsen (1999), A third-generation wave model for coastal regions, J. Geophys. Res., 104(C4), 7649-7666.
    22. Chen, J.-L., Shi, F., Hsu, T.-J., & Kirby, J. T. (2014). NearCoM-TVD — A quasi-3D nearshore circulation and sediment transport model. Coastal Engineering, 91, 200–212.
    23. Dean, R.G., Dalrymple, R.A., 2002. Coastal Processes with Engineering Applications. Cambridge University Press.
    24. Gottlieb, S., Shu, C. W., and Tadmore, E. (2001), Strong stability-preserving high-order time discretization methods. SIAM Review, 43(1), 89-112.
    25. James T.Liu, Shenn-yu Chao, Ray T. Hsu (2002), Numerical modeling study of sediment dispersal by a river plume, Continental Shelf Research, 22(11-13), 1745-1773.
    26. Longuet-Higgins, M.S., Stewart, R.W., 1964. Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Res. 11 (4), 529–562.
    27. Milliman, Lin, Kao, Liu, Liu, Chiu, Lin (2007), Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004, Geology, 35 (9), 779-782.
    28. Putrevu, U. and Svendsen, I.A. (1999)“Three-dimensional dispersion of momentum in waveinduced nearshore currents,” Eur. J. Mech. B/Fluids, Vol. 18, pp. 409-427.
    29. Shi, F., Hanes, D.M., Kirby, J.T., Erikson, L., Barnard, P., Eshleman, J., 2011. Pressure gradient driven nearshore circulation on a beach influenced by a large inlet-tidal shoal system. J. Geophys. Res. 116, C04020.
    30. Shi, F., Kirby, J.T., Hanes, D., 2007. An efficient mode-splitting method for a curvilinear nearshore circulation model. Coast. Eng. 54 (11), 811–824.
    31. Shi, F., Kirby, J.T., Harris, J.C., Geiman, J.D., and Grilli, S.T. (2011b) “A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation,” Ocean Modelling, Vol. 43-44, pp. 36-51.
    32. Shi, F., Sun, W., 1995. A variable boundary model of storm surge flooding in generalized curvilinear grids. Int. J. Numer. Methods Fluids 21 (8), 642–651.
    33. Shi, F., Svendsen, I. A., Kirby, J. T., & McKee Smith, J. (2003). A curvilinear version of a quasi-3D nearshore circulation model. Coastal Engineering, 49(1-2), 99–124.
    34. Soulsby, R.L., 1997. Dynamics of Marine Sands. Thomas Telford, London.
    35. Soulsby, R.L., Hamm, L., Klopman, G., Myrhaug, D., Simons, R.R., Thomas, G.P., 1993. Wave–current interaction within and outside the bottom boundary layer. Coast. Eng. 21, 41–69.
    36. Styles, R. (2015). Flow and Turbulence over an Oyster Reef. Journal of Coastal Research, 314, 978–985.
    37. Svendsen, and Putrevu (1994), Nearshore mixing and dispersion, Proc. R. Soc. London A, 445, 561–576
    38. Svendsen, I.A., 1984. Mass flux and undertow in a surf zone. Coast. Eng. 8, 347–365.
    39. Svendsen, I.A., Haas, K.A., Zhao, Q., 2004. Quasi-3D Nearshore Circulation Model SHORECIRC: Version 2.0, Research Report, Center for Applied Coastal Research. University of Delaware.
    40. Svendsen, I.A., Putrevu, U., 1990. Nearshore circulation with 3-D profiles. Proc 22th Int. Conf. Coastal Engrg. ASCE, pp. 241–254.
    41. Thompson, J.F., Warsi, Z.U., Mastin, C.W., 1985. Numerical Grid Generation: Foundations and Applications. Elsevier North-Holland, Inc., New York, NY, USA.
    42. Tonelli, M., & Petti, M. (2009). Hybrid finite volume – finite difference scheme for 2DH improved Boussinesq equations. Coastal Engineering, 56(5-6), 609–620.
    43. Toro, E.F., 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Third edition. Springer, New York.
    44. Van Rijn, L.C., 1984. Sediment transport, part III: bed forms and alluvial roughness. J. Hydraul. Eng. ASCE 110 (12), 1733–1754.
    45. Van Rijn, L.C., 2000. General view on sediment transport by currents and waves. Rep. Z2899, Delft Hydraulics, Delft, The Netherlands.
    46. Van Rijn, L.C., 2011. Principles of Fluid Flow and SurfaceWaves in Rivers, Estuaries and Coastal Seas, Including Update of 2011. Aqua Publications, Amsterdam, The Netherlands.
    47. Van Rijn, L.C., Tonnon, P.K., Walstra, D.J.R., 2011. Numerical modelling of erosion and accretion of plane sloping beaches at different scales. Coast. Eng. 58, 637–655.
    48. Wilmott, C. J. (1981), On validation of models, Phys. Geogr., 2, 184–194.

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE