簡易檢索 / 詳目顯示

研究生: 黃亦得
Huang, Yi-Te
論文名稱: 在傳統與量子電腦上模擬量子動力學
Simulating Quantum Dynamics on Classical and Quantum Computers
指導教授: 陳岳男
Chen, Yueh-Nan
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 145
中文關鍵詞: 量子動力學量子電腦開放性量子系統非馬可夫效應階層式運動方程林德布拉德方程量子關聯性量子態傳輸量子資訊置亂量子資訊處理Julia 程式語言
外文關鍵詞: quantum dynamics, quantum computer, open quantum system, non-Markovian effect, hierarchical equations of motion, Lindblad equation, quantum correlations, quantum state transfer, quantum information scrambling, quantum information processing, Julia programming language
ORCID: 0000-0002-2520-8348
ResearchGate: https://www.researchgate.net/profile/Yi-Te-Huang-2
相關次數: 點閱:53下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子動力學主要是描述量子系統隨時間的演化。雖然孤立量子系統的動力學由薛丁格方程式所決定,但模擬開放性量子系統需要更廣泛的理論架構,才能精確地刻劃系統與周遭環境耦合時所產生的複雜交互作用以及潛在的非馬可夫效應。
    本論文首先回顧兩種描述開放性量子系統動力學的方法:階層式運動方程以及林德布拉德方程。這兩套方法適用於不同的系統環境耦合強度。由於解析解通常難以獲得,發展高效率的數值工具和實驗方法用以模擬量子動力學便顯得格外重要。
    因此,我們開發兩個開源套件:QuantumToolbox.jl 和 HierarchicalEOM.jl。這兩個套件皆以 Julia 程式語言撰寫,並且同時支援高效能的 CPU 和 GPU 運算。我們藉由以下兩個物理模型來展示這些套件的功能:與近藤效應相關的單一雜質安德森模型以及一個電荷–共振腔極強耦合系統同時與玻色子和費米子環境交互作用。除此之外,我們也比較階層式運動方程與林德布拉德方程兩個方法的數值模擬結果,突顯非馬可夫效應在準確描述開放性量子系統動力學上的重要性。
    受到費曼 (R. P. Feynman) 於 1982 年所提出構想的啟發,我們進一步透過雲端量子電腦直接模擬量子動力學,並且探討以下兩個模型:量子態傳輸和量子資訊置亂。這兩個模型在量子資訊處理上分別展現不同面向的應用。我們針對這兩個模型,分別提出刻劃其量子關聯性的方法。接著,透過量子電腦進行實驗來驗證其行為,同時也能夠比較不同量子電腦所得到的實驗結果。我們的研究結果指出,如今的嘈雜中等規模量子電腦已具備有模擬小規模量子動力學和產生真正量子關聯性的能力。
    本論文旨在提供量子理論的見解與實際應用,推動量子模擬、量子電腦效能評估、量子資訊處理以及量子科技的發展。

    Quantum dynamics describes the time evolution of quantum systems. While the dynamics of closed quantum systems are governed by the Schr\"odinger equation, open quantum systems require more general theoretical frameworks to accurately capture complex interactions and potential non-Markovian effects arising from their couplings to the surrounding environments.
    In this dissertation, we begin by reviewing two approaches for describing open quantum system dynamics: the hierarchical equations of motion and the Lindblad equation. These approaches are suitable for different system-environment coupling regimes. Because analytical solutions are seldom available, the development of efficient numerical tools and experimental methods for simulating quantum dynamics becomes essential.
    Therefore, we develop two open-source software packages: QuantumToolbox.jl and HierarchicalEOM.jl. Both of them are written in the Julia programming language and support high-performance CPUs and GPUs computing. We demonstrate their functionalities using two physical examples: the single impurity Anderson model relevant to Kondo effects, and a ultra-strongly coupled charge–cavity system interacting with bosonic and fermionic reservoirs. Furthermore, a comparison between the hierarchical equations of motion and Lindblad equation highlights the importance of non-Markovian effects in accurately describing open quantum system dynamics.
    Inspired by R. P. Feynman's proposal in 1982, we directly simulate quantum dynamics on cloud-based quantum computers and investigate the following two models: quantum state transfer and quantum information scrambling. Each of them demonstrates different application aspects of quantum information processing. For both models, we propose methods to characterize quantum correlations and validate their behavior through experiments on quantum computers. We then compare the results obtained from different quantum computers. Our findings highlight the capability of current noisy intermediate-scale quantum computers to simulate small-scale quantum dynamics and generate genuine quantum correlations.
    This dissertation aims to contribute both theoretical insights and practical applications to advance quantum simulations, quantum computer benchmarking, quantum information processing, and quantum technologies.

    摘要 I Abstract III 誌謝 (Acknowledgments) V Contents VII List of Tables IX List of Figures X List of Symbols XI List of Publications XIV 1 Background and Motivations 1 1.1 Overview of quantum mechanics 1 1.2 Quantum dynamics and quantum correlations 5 1.3 Julia programming language 7 1.4 Quantum computers 8 1.5 Dissertation overview 9 2 Quantum Dynamics 10 2.1 Schrödinger and von Neumann equations 10 2.2 Coherent state path integral (CSPI) 11 2.2.1 Bosonic coherent state 12 2.2.2 Grassmann algebra and fermionic coherent state 13 2.2.3 Action functional 15 2.3 Open quantum system dynamics 18 2.3.1 Model 19 2.3.2 Feynman-Vernon influence functional (FVIF) approach 21 2.4 Hierarchical equations of motion (HEOM) 26 2.5 Lindblad equation 28 3 Simulating Quantum Dynamics on Classical Computers 31 3.1 Quantum toolbox in Julia 32 3.2 An efficient Julia framework for hierarchical equations of motion 36 3.3 Examples 41 3.3.1 Single impurity Anderson model (SIAM) 41 3.3.2 The ultra-strongly coupled charge–cavity system interacting with bosonic and fermionic reservoirs 45 4 Simulating Quantum State Transfer on Quantum Computers 51 4.1 Quantum state transfer (QST) 52 4.1.1 Model 54 4.2 Spatiotemporal steering (STS) 55 4.3 Benchmarking QST on quantum computers using STS 58 4.3.1 Experimental realizations on quantum computers 60 4.3.2 A noise simulation algorithm for quantum computers 63 4.3.3 Experimental results 64 5 Simulating Quantum Information Scrambling on Quantum Computers 67 5.1 Quantum information scrambling (QIS) 68 5.2 Postselected closed timelike curves (PCTCs) 69 5.3 A protocol for sending scrambled quantum information into the past 70 5.4 Experimental demonstration on quantum computers 75 6 Summary and Outlook 80 Appendices 83 A Derivations of open quantum system dynamics 83 A.1 Derivation of influence functional 84 A.1.1 Influence functional of bosonic environment 85 A.1.2 Influence functional of fermionic environment 93 A.2 Derivation of hierarchical equations of motion 101 A.2.1 Hierarchy of bosonic environment 102 A.2.2 Hierarchy of fermionic environment 106 Bibliography 111

    [1] Huang, Y.-T., Lin, J.-D., Ku, H.-Y. & Chen, Y.-N. Benchmarking quantum state transfer on quantum devices. Physical Review Research 3, 023038 (2021).
    [2] Huang, Y.-T. et al. An efficient Julia framework for hierarchical equations of motion in open quantum systems. Communications Physics 6, 1–14 (2023).
    [3] Huang, Y.-T. et al. Experimental decoding scrambled quantum information from the future. arXiv:2501.16335 (2025).
    [4] Mercurio, A. et al. QuantumToolbox.jl: An efficient Julia framework for simulating open quantum systems. arXiv:2504.21440 (2025).
    [5] Chan, F.-J. et al. Maxwell’s two-demon engine under pure dephasing noise. Physical Review A 106, 052201 (2022).
    [6] Kuo, P.-C. et al. Kondo QED: The Kondo effect and photon trapping in a two-impurity Anderson model ultrastrongly coupled to light. Physical Review Research 5, 043177 (2023).
    [7] Lai, P.-R., Lin, J.-D., Huang, Y.-T., Jan, H.-C. & Chen, Y.-N. Quick charging of a quantum battery with superposed trajectories. Physical Review Research 6, 023136 (2024).
    [8] Kuo, P.-C. et al. Non-Markovian skin effect. Physical Review Research 7, L012068 (2025).
    [9] Kuo, P.-C. et al. Dissipative engineering with strong light–matter coupling for optimized photo-oxidation suppression in organic chromophores. The Journal of Chemical Physics 162, 244120 (2025).
    [10] Heisenberg, W. Über quantentheoretische umdeutung kinematischer und mechanischer beziehungen. Zeitschrift für Physik 33, 879–893 (1925).
    [11] Born, M., Heisenberg, W. & Jordan, P. Zur Quantenmechanik. II. Zeitschrift für Physik 35, 557–615 (1926).
    [12] Born, M. Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik 37, 863–867 (1926).
    [13] Schrödinger, E. Quantisierung als eigenwertproblem. Annalen der Physik 384, 361–376 (1926).
    [14] Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review 28, 1049–1070 (1926).
    [15] Dirac, P. A. M. The Principles of Quantum Mechanics (Clarendon, Oxford, 1958).
    [16] Feynman, R. P. Space-Time Approach to Non-Relativistic Quantum Mechanics. Reviews of Modern Physics 20, 367–387 (1948).
    [17] Feynman, R. P. & Hibbs, A. R. Quantum Mechanics and Path Integrals. International Series in Pure and Applied Physics (McGraw-Hill, New York, NY, 1995), 20. [pr.] edn.
    [18] Sakurai, J. J. & Napolitano, J. Modern Quantum Mechanics (Cambridge University Press, 2020), 3 edn.
    [19] Shankar, R. Principles of Quantum Mechanics (Springer US, New York, NY, 1994).
    [20] Griffiths, D. J. & Schroeter, D. F. Introduction to Quantum Mechanics (Cambridge University Press, 2018), 3 edn.
    [21] Zhang, W.-M., Feng, D. H. & Gilmore, R. Coherent states: Theory and some applications. Reviews of Modern Physics 62, 867–927 (1990).
    [22] Negele, J. W. & Orland, H. Quantum Many-Particle Systems. Advanced Books Classics (CRC Press, Boca Raton London New York, 2018).
    [23] Kleinert, H. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (WORLD SCIENTIFIC, 2009), 5 edn.
    [24] von Neumann, J. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1927, 245–272 (1927).
    [25] von Neumann, J. Mathematische Grundlagen der Quantenmechanik (Springer, 1932).
    [26] Feynman, R. P. & Vernon, F. L. The theory of a general quantum system interacting with a linear dissipative system. Annals of Physics 24, 118–173 (1963).
    [27] Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford university press, Oxford New York, 2002).
    [28] Carmichael, H. An Open Systems Approach to Quantum Optics: Lectures Presented at the Université Libre de Bruxelles October 28 to November 4, 1991, vol. 18 of Lecture Notes in Physics Monographs (Springer Berlin Heidelberg, Berlin, Heidelberg, 1993).
    [29] Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge University Press, 1997), 1 edn.
    [30] Campaioli, F., Cole, J. H. & Hapuarachchi, H. Quantum Master Equations: Tips and Tricks for Quantum Optics, Quantum Computing, and Beyond. PRX Quantum 5, 020202 (2024).
    [31] Weiss, U. Quantum Dissipative Systems (WORLD SCIENTIFIC, 2012), 4 edn.
    [32] Wilson, K. G. The renormalization group: Critical phenomena and the Kondo problem. Reviews of Modern Physics 47, 773–840 (1975).
    [33] Bulla, R., Costi, T. A. & Pruschke, T. Numerical renormalization group method for quantum impurity systems. Reviews of Modern Physics 80, 395–450 (2008).
    [34] Potts, P. P. Quantum Thermodynamics. arXiv:2406.19206 (2024).
    [35] Huang, W.-M. & Zhang, W.-M. Nonperturbative renormalization of quantum thermodynamics from weak to strong couplings. Physical Review Research 4, 023141 (2022).
    [36] Lambert, N. et al. Quantum biology. Nature Physics 9, 10–18 (2013).
    [37] Scholes, G. D. et al. Using coherence to enhance function in chemical and biophysical systems. Nature 543, 647–656 (2017).
    [38] Lidar, D. A. & Brun, T. A. (eds.) Quantum Error Correction (Cambridge University Press, 2013), 1 edn.
    [39] Garraway, B. M. Nonperturbative decay of an atomic system in a cavity. Physical Review A 55, 2290–2303 (1997).
    [40] Strasberg, P., Schaller, G., Lambert, N. & Brandes, T. Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping. New Journal of Physics 18, 073007 (2016).
    [41] Werner, A. H. et al. Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems. Physical Review Letters 116, 237201 (2016).
    [42] Tanimura, Y. & Kubo, R. Time Evolution of a Quantum System in Contact with a Nearly Gaussian-Markoffian Noise Bath. Journal of the Physical Society of Japan 58, 101–114 (1989).
    [43] Tanimura, Y. Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath. Physical Review A 41, 6676–6687 (1990).
    [44] Tanimura, Y. Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM). The Journal of Chemical Physics 153, 020901 (2020).
    [45] Jin, J., Zheng, X. & Yan, Y. Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach. The Journal of Chemical Physics 128, 234703 (2008).
    [46] Li, Z. et al. Hierarchical Liouville-Space Approach for Accurate and Universal Characterization of Quantum Impurity Systems. Physical Review Letters 109, 266403 (2012).
    [47] Bätge, J., Ke, Y., Kaspar, C. & Thoss, M. Nonequilibrium open quantum systems with multiple bosonic and fermionic environments: A hierarchical equations of motion approach. Physical Review B 103, 235413 (2021).
    [48] Bose, S. Quantum Communication through an Unmodulated Spin Chain. Physical Review Letters 91, 207901 (2003).
    [49] Christandl, M., Datta, N., Ekert, A. & Landahl, A. J. Perfect State Transfer in Quantum Spin Networks. Physical Review Letters 92, 187902 (2004).
    [50] Kay, A. Perfect, efficient, state transfer and its application as a constructive tool. International Journal of Quantum Information 08, 641–676 (2010).
    [51] Xu, S. & Swingle, B. Scrambling Dynamics and Out-of-Time-Ordered Correlators in Quantum Many-Body Systems. PRX Quantum 5, 010201 (2024).
    [52] Swingle, B. Unscrambling the physics of out-of-time-order correlators. Nature Physics 14, 988–990 (2018).
    [53] Iyoda, E. & Sagawa, T. Scrambling of quantum information in quantum many-body systems. Physical Review A 97, 042330 (2018).
    [54] Ding, D., Hayden, P. & Walter, M. Conditional mutual information of bipartite unitaries and scrambling. Journal of High Energy Physics 2016, 145 (2016).
    [55] Hosur, P., Qi, X.-L., Roberts, D. A. & Yoshida, B. Chaos in quantum channels. Journal of High Energy Physics 2016, 4 (2016).
    [56] Preskill, J. Lecture Notes for Physics 229: Quantum Information and Computation (1998).
    [57] Chen, S.-L. et al. Quantifying Non-Markovianity with Temporal Steering. Physical Review Letters 116, 020503 (2016).
    [58] Chen, Y.-N. et al. Temporal steering inequality. Physical Review A 89, 032112 (2014).
    [59] Chen, S.-L. et al. Spatio-Temporal Steering for Testing Nonclassical Correlations in Quantum Networks. Scientific Reports 7, 3728 (2017).
    [60] Bezanson, J., Karpinski, S., Shah, V. B. & Edelman, A. Julia: A Fast Dynamic Language for Technical Computing. arXiv:1209:5145 (2012).
    [61] Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: A Fresh Approach to Numerical Computing. SIAM Review 59, 65–98 (2017).
    [62] Besard, T., Foket, C. & De Sutter, B. Effective Extensible Programming: Unleashing Julia on GPUs. IEEE Transactions on Parallel and Distributed Systems 30, 827–841 (2019).
    [63] Rackauckas, C. & Nie, Q. DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia. Journal of Open Research Software 5, 15 (2017).
    [64] Kimmerer, W., Puri, V. & Rackauckas, C. Linearsolve.jl. https://github.com/SciML/LinearSolve.jl.
    [65] Feynman, R. P. Simulating physics with computers. International Journal of Theoretical Physics 21, 467–488 (1982).
    [66] Buluta, I. & Nori, F. Quantum Simulators. Science 326, 108–111 (2009).
    [67] Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Reviews of Modern Physics 86, 153–185 (2014).
    [68] Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2012), 1 edn.
    [69] Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018).
    [70] Klauder, J. R. Path integrals and stationary-phase approximations. Physical Review D 19, 2349–2356 (1979).
    [71] Cirio, M., Kuo, P.-C., Chen, Y.-N., Nori, F. & Lambert, N. Canonical derivation of the fermionic influence superoperator. Physical Review B 105, 035121 (2022).
    [72] Jun-Chen, S. & Fu-Hou, Z. Correct Path-Integral Formulation of Quantum Thermal Field Theory in Coherent State Representation. Communications in Theoretical Physics 43, 641–656 (2005).
    [73] Shi, Q., Chen, L., Nan, G., Xu, R.-X. & Yan, Y. Efficient hierarchical Liouville space propagator to quantum dissipative dynamics. The Journal of Chemical Physics 130, 084105 (2009).
    [74] Hu, J., Luo, M., Jiang, F., Xu, R.-X. & Yan, Y. Padé spectrum decompositions of quantum distribution functions and optimal hierarchical equations of motion construction for quantum open systems. The Journal of Chemical Physics 134, 244106 (2011).
    [75] Chen, Z.-H., Wang, Y., Zheng, X., Xu, R.-X. & Yan, Y. Universal time-domain Prony fitting decomposition for optimized hierarchical quantum master equations. The Journal of Chemical Physics 156, 221102 (2022).
    [76] Xu, M., Yan, Y., Shi, Q., Ankerhold, J. & Stockburger, J. T. Taming Quantum Noise for Efficient Low Temperature Simulations of Open Quantum Systems. Physical Review Letters 129, 230601 (2022).
    [77] Dan, X., Xu, M., Stockburger, J. T., Ankerhold, J. & Shi, Q. Efficient low-temperature simulations for fermionic reservoirs with the hierarchical equations of motion method: Application to the Anderson impurity model. Physical Review B 107, 195429 (2023).
    [78] Härtle, R., Cohen, G., Reichman, D. R. & Millis, A. J. Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through interacting quantum dots: A hierarchical quantum master equation approach. Physical Review B 88, 235426 (2013).
    [79] Wenderoth, S., Bätge, J. & Härtle, R. Sharp peaks in the conductance of a double quantum dot and a quantum-dot spin valve at high temperatures: A hierarchical quantum master equation approach. Physical Review B 94, 121303 (2016).
    [80] Härtle, R., Cohen, G., Reichman, D. R. & Millis, A. J. Transport through an Anderson impurity: Current ringing, nonlinear magnetization, and a direct comparison of continuous-time quantum Monte Carlo and hierarchical quantum master equations. Physical Review B 92, 085430 (2015).
    [81] Tan, S. M. A computational toolbox for quantum and atomic optics. Journal of Optics B: Quantum and Semiclassical Optics 1, 424 (1999).
    [82] Johansson, J. R., Nation, P. D. & Nori, F. QuTiP: An open-source Python framework for the dynamics of open quantum systems. Computer Physics Communications 183, 1760–1772 (2012).
    [83] Johansson, J. R., Nation, P. D. & Nori, F. QuTiP 2: A Python framework for the dynamics of open quantum systems. Computer Physics Communications 184, 1234–1240 (2013).
    [84] Lambert, N. et al. QuTiP 5: The Quantum Toolbox in Python. arXiv:2412.04705 (2024).
    [85] Krämer, S., Plankensteiner, D., Ostermann, L. & Ritsch, H. QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018).
    [86] Guilmin, P., Bocquet, A., Genois, É., Weiss, D. & Gautier, R. Dynamiqs: an open-source python library for gpu-accelerated and differentiable simulation of quantum systems. https://github.com/dynamiqs/dynamiqs (2025).
    [87] Wigner, E. On the Quantum Correction For Thermodynamic Equilibrium. Physical Review 40, 749–759 (1932).
    [88] Lambert, N. et al. QuTiP-BoFiN: A bosonic and fermionic numerical hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics. Physical Review Research 5, 013181 (2023).
    [89] Ye, L. et al. HEOM-QUICK: A program for accurate, efficient, and universal characterization of strongly correlated quantum impurity systems. WIREs Computational Molecular Science 6, 608–638 (2016).
    [90] Zhang, D. et al. HEOM-QUICK2: A general-purpose simulator for fermionic many-body open quantum systems—An update. WIREs Computational Molecular Science 14, e1727 (2024).
    [91] Strümpfer, J. & Schulten, K. Open Quantum Dynamics Calculations with the Hierarchy Equations of Motion on Parallel Computers. Journal of Chemical Theory and Computation 8, 2808–2816 (2012).
    [92] Kramer, T., Noack, M., Reinefeld, A., Rodríguez, M. & Zelinskyy, Y. Efficient calculation of open quantum system dynamics and time-resolved spectroscopy with distributed memory HEOM (DM-HEOM). Journal of Computational Chemistry 39, 1779–1794 (2018).
    [93] Ikeda, T. & Scholes, G. D. Generalization of the hierarchical equations of motion theory for efficient calculations with arbitrary correlation functions. The Journal of Chemical Physics 152, 204101 (2020).
    [94] Velizhanin, K. A., Wang, H. & Thoss, M. Heat transport through model molecular junctions: A multilayer multiconfiguration time-dependent Hartree approach. Chemical Physics Letters 460, 325–330 (2008).
    [95] Kato, A. & Tanimura, Y. Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and qubit-qubit coherence. The Journal of Chemical Physics 143, 064107 (2015).
    [96] Kato, A. & Tanimura, Y. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines. The Journal of Chemical Physics 145, 224105 (2016).
    [97] Song, L. & Shi, Q. Hierarchical equations of motion method applied to nonequilibrium heat transport in model molecular junctions: Transient heat current and high-order moments of the current operator. Physical Review B 95, 064308 (2017).
    [98] Anderson, P. W. Localized Magnetic States in Metals. Physical Review 124, 41–53 (1961).
    [99] Schrieffer, J. R. & Wolff, P. A. Relation between the Anderson and Kondo Hamiltonians. Physical Review 149, 491–492 (1966).
    [100] Wang, S., Zheng, X., Jin, J. & Yan, Y. Hierarchical Liouville-space approach to nonequilibrium dynamical properties of quantum impurity systems. Physical Review B 88, 035129 (2013).
    [101] Kouwenhoven, L. & Glazman, L. Revival of the Kondo effect. Physics World 14, 33–38 (2001).
    [102] V. Borzenets, I. et al. Observation of the Kondo screening cloud. Nature 579, 210–213 (2020).
    [103] Smith, L. W. et al. Electrically Controllable Kondo Correlation in Spin-Orbit-Coupled Quantum Point Contacts. Physical Review Letters 128, 027701 (2022).
    [104] van der Wiel, W. G. et al. Electron transport through double quantum dots. Reviews of Modern Physics 75, 1–22 (2002).
    [105] Bruhat, L. E. et al. Circuit QED with a quantum-dot charge qubit dressed by Cooper pairs. Physical Review B 98, 155313 (2018).
    [106] van Woerkom, D. J. et al. Microwave Photon-Mediated Interactions between Semiconductor Qubits. Physical Review X 8, 041018 (2018).
    [107] Scarlino, P. et al. Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit. Nature Communications 10, 3011 (2019).
    [108] Viennot, J. J., Delbecq, M. R., Dartiailh, M. C., Cottet, A. & Kontos, T. Out-of-equilibrium charge dynamics in a hybrid circuit quantum electrodynamics architecture. Physical Review B 89, 165404 (2014).
    [109] Bruhat, L. E. et al. Cavity Photons as a Probe for Charge Relaxation Resistance and Photon Emission in a Quantum Dot Coupled to Normal and Superconducting Continua. Physical Review X 6, 021014 (2016).
    [110] Souquet, J.-R., Woolley, M. J., Gabelli, J., Simon, P. & Clerk, A. A. Photon-assisted tunnelling with nonclassical light. Nature Communications 5, 5562 (2014).
    [111] Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nature Reviews Physics 1, 19–40 (2019).
    [112] Yao, N. Y. et al. Robust Quantum State Transfer in Random Unpolarized Spin Chains. Physical Review Letters 106, 040505 (2011).
    [113] Kandel, Y. P. et al. Coherent spin-state transfer via Heisenberg exchange. Nature 573, 553–557 (2019).
    [114] Bayat, A. & Bose, S. Information-transferring ability of the different phases of a finite XXZ spin chain. Physical Review A 81, 012304 (2010).
    [115] Schrödinger, E. Discussion of Probability Relations between Separated Systems. Mathematical Proceedings of the Cambridge Philosophical Society 31, 555–563 (1935).
    [116] Einstein, A., Podolsky, B. & Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review 47, 777–780 (1935).
    [117] Wiseman, H. M., Jones, S. J. & Doherty, A. C. Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox. Physical Review Letters 98, 140402 (2007).
    [118] Uola, R., Costa, A. C. S., Nguyen, H. C. & Gühne, O. Quantum steering. Reviews of Modern Physics 92, 015001 (2020).
    [119] Piani, M. & Watrous, J. Necessary and Sufficient Quantum Information Characterization of Einstein-Podolsky-Rosen Steering. Physical Review Letters 114, 060404 (2015).
    [120] Zhao, Y.-Y. et al. Experimental demonstration of measurement-device-independent measure of quantum steering. npj Quantum Information 6, 77 (2020).
    [121] Branciard, C., Cavalcanti, E. G., Walborn, S. P., Scarani, V. & Wiseman, H. M. One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering. Physical Review A 85, 010301 (2012).
    [122] Quintino, M. T., Vértesi, T. & Brunner, N. Joint Measurability, Einstein-Podolsky-Rosen Steering, and Bell Nonlocality. Physical Review Letters 113, 160402 (2014).
    [123] Uola, R., Moroder, T. & Gühne, O. Joint Measurability of Generalized Measurements Implies Classicality. Physical Review Letters 113, 160403 (2014).
    [124] Cavalcanti, D. & Skrzypczyk, P. Quantum steering: A review with focus on semidefinite programming. Reports on Progress in Physics 80, 024001 (2016).
    [125] Chiu, C.-Y., Lambert, N., Liao, T.-L., Nori, F. & Li, C.-M. No-cloning of quantum steering. npj Quantum Information 2, 1–4 (2016).
    [126] Lin, J.-D. et al. Quantum steering as a witness of quantum scrambling. Physical Review A 104, 022614 (2021).
    [127] White, T. C. et al. Preserving entanglement during weak measurement demonstrated with a violation of the Bell–Leggett–Garg inequality. npj Quantum Information 2, 1–5 (2016).
    [128] Kofler, J. & Brukner, Č. Condition for macroscopic realism beyond the Leggett-Garg inequalities. Physical Review A 87, 052115 (2013).
    [129] Clemente, L. & Kofler, J. Necessary and sufficient conditions for macroscopic realism from quantum mechanics. Physical Review A 91, 062103 (2015).
    [130] Nagy, S. & Vértesi, T. EPR Steering inequalities with Communication Assistance. Scientific Reports 6, 21634 (2016).
    [131] Uola, R., Vitagliano, G. & Budroni, C. Leggett-Garg macrorealism and the quantum nondisturbance conditions. Physical Review A 100, 042117 (2019).
    [132] Horodecki, M., Shor, P. W. & Ruskai, M. B. Entanglement Breaking Channels. Reviews in Mathematical Physics 15, 629–641 (2003).
    [133] Ku, H.-Y. et al. Experimental test of non-macrorealistic cat states in the cloud. npj Quantum Information 6, 98 (2020).
    [134] Gallego, R. & Aolita, L. Resource Theory of Steering. Physical Review X 5, 041008 (2015).
    [135] IBM Quantum. https://quantum.ibm.com/.
    [136] Javadi-Abhari, A. et al. Quantum computing with Qiskit. arXiv:2405.08810 (2024).
    [137] QuTech Quantum Inspire. https://www.quantum-inspire.com/.
    [138] Lloyd, S. et al. Closed Timelike Curves via Postselection: Theory and Experimental Test of Consistency. Physical Review Letters 106, 040403 (2011).
    [139] Lloyd, S., Maccone, L., Garcia-Patron, R., Giovannetti, V. & Shikano, Y. Quantum mechanics of time travel through post-selected teleportation. Physical Review D 84, 025007 (2011).
    [140] Shen, H., Zhang, P., You, Y.-Z. & Zhai, H. Information Scrambling in Quantum Neural Networks. Physical Review Letters 124, 200504 (2020).
    [141] Yan, B. & Sinitsyn, N. A. Recovery of Damaged Information and the Out-of-Time-Ordered Correlators. Physical Review Letters 125, 040605 (2020).
    [142] Hayden, P. & Preskill, J. Black holes as mirrors: Quantum information in random subsystems. Journal of High Energy Physics 2007, 120 (2007).
    [143] Yoshida, B. & Kitaev, A. Efficient decoding for the Hayden-Preskill protocol. arXiv:1710.03363 (2017).
    [144] Yoshida, B. & Yao, N. Y. Disentangling Scrambling and Decoherence via Quantum Teleportation. Physical Review X 9, 011006 (2019).
    [145] Bao, N. & Kikuchi, Y. Hayden-Preskill decoding from noisy Hawking radiation. Journal of High Energy Physics 2021, 17 (2021).
    [146] Schuster, T. et al. Many-Body Quantum Teleportation via Operator Spreading in the Traversable Wormhole Protocol. Physical Review X 12, 031013 (2022).
    [147] Landsman, K. A. et al. Verified quantum information scrambling. Nature 567, 61–65 (2019).
    [148] Blok, M. S. et al. Quantum Information Scrambling on a Superconducting Qutrit Processor. Physical Review X 11, 021010 (2021).
    [149] Wang, J.-H. et al. Information scrambling dynamics in a fully controllable quantum simulator. Physical Review Research 4, 043141 (2022).
    [150] Shapoval, I., Su, V. P., de Jong, W., Urbanek, M. & Swingle, B. Towards Quantum Gravity in the Lab on Quantum Processors. Quantum 7, 1138 (2023).
    [151] Van Stockum, W. J. IX.—The Gravitational Field of a Distribution of Particles Rotating about an Axis of Symmetry. Proceedings of the Royal Society of Edinburgh 57, 135–154 (1938).
    [152] Gödel, K. An Example of a New Type of Cosmological Solutions of Einstein’s Field Equations of Gravitation. Reviews of Modern Physics 21, 447–450 (1949).
    [153] Morris, M. S., Thorne, K. S. & Yurtsever, U. Wormholes, Time Machines, and the Weak Energy Condition. Physical Review Letters 61, 1446–1449 (1988).
    [154] Friedman, J. et al. Cauchy problem in spacetimes with closed timelike curves. Physical Review D 42, 1915–1930 (1990).
    [155] Gott, J. R. Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions. Physical Review Letters 66, 1126–1129 (1991).
    [156] Deutsch, D. Quantum mechanics near closed timelike lines. Physical Review D 44, 3197–3217 (1991).
    [157] Deser, S., Jackiw, R. & ’T Hooft, G. Physical cosmic strings do not generate closed timelike curves. Physical Review Letters 68, 267–269 (1992).
    [158] Hawking, S. W. Chronology protection conjecture. Physical Review D 46, 603–611 (1992).
    [159] Carroll, S. M., Farhi, E., Guth, A. H. & Olum, K. D. Energy-momentum restrictions on the creation of Gott time machines. Physical Review D 50, 6190–6206 (1994).
    [160] Monroe, H. Are Causality Violations Undesirable? Foundations of Physics 38, 1065–1069 (2008).
    [161] Shepelin, A. V., Rostom, A. M., Tomilin, V. A. & Il’ichov, L. V. Multiworld motives by closed time-like curves. Journal of Physics: Conference Series 2081, 012029 (2021).
    [162] Lloyd, S. & Preskill, J. Unitarity of black hole evaporation in final-state projection models. Journal of High Energy Physics 2014, 126 (2014).
    [163] Xu, P. et al. Satellite testing of a gravitationally induced quantum decoherence model. Science 366, 132–135 (2019).
    [164] Kim, I. H. & Preskill, J. Complementarity and the unitarity of the black hole S-matrix. Journal of High Energy Physics 2023, 233 (2023).
    [165] Oreshkov, O. & Cerf, N. J. Operational formulation of time reversal in quantum theory. Nature Physics 11, 853–858 (2015).
    [166] Korotaev, S. M. & Kiktenko, E. O. Quantum causality in closed timelike curves. Physica Scripta 90, 085101 (2015).
    [167] Chiribella, G. & Liu, Z. Quantum operations with indefinite time direction. Communications Physics 5, 1–8 (2022).
    [168] Kiktenko, E. O. Exploring postselection-induced quantum phenomena with time-bidirectional state formalism. Physical Review A 107, 032419 (2023).
    [169] Arvidsson-Shukur, D. R. M., McConnell, A. G. & Yunger Halpern, N. Nonclassical Advantage in Metrology Established via Quantum Simulations of Hypothetical Closed Timelike Curves. Physical Review Letters 131, 150202 (2023).
    [170] Song, X. et al. Agnostic Phase Estimation. Physical Review Letters 132, 260801 (2024).
    [171] Jozsa, R. Fidelity for Mixed Quantum States. Journal of Modern Optics 41, 2315–2323 (1994).
    [172] Quantinuum H1-1. https://www.quantinuum.com/.
    [173] Cirio, M., Liang, P. & Lambert, N. Input-Output Hierarchical Equations Of Motion. arXiv:2408.12221 (2024).
    [174] Su, Y., Wang, Y. & Dou, W. Nonperturbative Open Quantum Dynamics Bypass Influence Functional. arXiv:2503.00297 (2025).
    [175] Sarovar, M. & Grace, M. D. Reduced Equations of Motion for Quantum Systems Driven by Diffusive Markov Processes. Physical Review Letters 109, 130401 (2012).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE