| 研究生: |
黎岳 Li, Yueh |
|---|---|
| 論文名稱: |
彈性微穿孔板吸音特性之分析研究 Research on the Properties of Acoustic Absorption for Flexible Micro-perforated Panels |
| 指導教授: |
涂季平
Too, Gee-Pinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 微穿孔板 、吸音率 、彈性體 、聲振耦合 、有限元素法 |
| 外文關鍵詞: | micro-perforated panels, sound absorption coefficient, elastic body, vibro-acoustics coupled, Finite Element Method |
| 相關次數: | 點閱:156 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
學術界對於微穿孔板吸音器的研究已有非常多成果,在實驗量測部份我們能觀察到系統吸音係數曲線因為彈性板振動的影響,在一些頻率位置會出現驟升峰值或驟降谷值,這在無限剛板的假設中無法預測。本篇論文針對有限尺寸的彈性微穿孔板與其背後空氣層所組成的彈性微穿孔板吸音器有詳細論述。
彈性體的理論模型是利用阻抗類比轉換求解聲振系統,彈性微穿孔板吸音器的總輸入阻抗內含有微穿孔、彈性板及板後空氣層的效應。而測試實驗部分,本文利用阻抗管法中的轉移函數法,進行微穿孔板試片吸音率的量測。
本文透過數值分析方法,使用ANSYS軟體對彈性板做結構分析、在Virtual.Lab Acoustics軟體中建立模擬聲場,以聲壓響應計算彈性板聲阻抗率、系統吸音率。提出一套彈性微穿孔板吸音器吸音係數預測的分析程序,所得結果經實驗驗證。
在彈性體理論模型的預估中,圓板材料參數、結構阻尼、圓板自然頻率與荷姆霍茲共振頻率間相對關係都主導著吸音係數曲線上的局部極值,根據這些結果,未來在微穿孔板的開發階段,設計流程將更有效率。
In this paper, the sound absorption of a finite flexible micro-perforated panel (MPP) backed by an air cavity is studied in details. The absorption coefficient developed for the micro-perforated panel absorber (MPPA) is based on the equivalent electro-acoustical circuit analogy of its equivalent mechanical system. A process utilized to predict the sound absorption using the computer-aided design software products is developed.
Experiments are carried out at normal sound incidence and plane waves. The theoretical results show good agreements with the measurements after making an adjustment for the new-type V-shape panel. It can be concluded that (1)Extra absorption peaks or dips are clearly observed at frequencies which the axisymmetric circular panel modes are excited. (2)The absorption of a flexible MPP can be further enhanced by adjusting its design to bring the structural resonant frequencies higher than the Helmholtz resonant frequency and closer together to widen the effective absorption bandwidth. (3)The method for modifying the stiffness of the circular panel is to adjust the density and the thickness simultaneously to maintain the exact mass of V-shape panel. (4)Numerical simulation analytic process are used to estimate the absorb ability of the MPP before producing in order to save on costs.
[1] 杜功煥,朱哲民,龔秀芬 (2001)。聲學基礎(第2版)。南京:南京大學出版社。
[2] 馬大猷 (1975)。微穿孔吸聲結構的理論和設計。中國科學,第一期,38-50。
[3] 馬大猷,沈㠙 (2004)。聲學手冊(修訂版)。北京:科學出版社。
[4] 葉子平 (2015)。新型微穿孔吸音板之理論及實驗研究。國立成功大學系統及船舶機電工程學系碩士論文,未出版,台南。
[5] 蔡哲玄 (2009)。薄微穿孔板吸音機制之物裡洞察。國立台灣大學工程科學及海洋工程學研究所碩士論文,未出版,台北。
[6] 標準檢驗局,CNS 9056(A3165),餘響室法吸音率測定法,1986。
[7] 標準檢驗局,CNS 13208,管內法建築材垂直入射吸音率測定法,1993。
[8] ASTM C423-90a, Standard test method for sound absorption and sound absorption coefficient by the reverberation room method.
[9] ASTM E1050-98, Standard test method for impedance and absorption of Acoustical materials using a tube, two microphones, and a digital frequency analysis system.
[10] Azma Putra (2008). Dissertation Sound Radiation from Perforated Plates. Unpublished doctoral dissertation, University of Southampton, Southampton.
[11] C. Zwikker and C. W. Kosten (1949). Sound absorbing materials. Elsevier, New York.
[12] Crandall, J. B. (1926). Theory of vibrating system and sound. Van Nostrand, New York, Appendix A.
[13] Cédric Maury, Teresa Bravo and Cédric Pinhède (2012). Coupled mode analysis of thin micro-perforated panel absorbers. ACOUSTICS 2012, Hong Kong.
[14] Heidi Ruiz Villamil (2012). Dissertation Acoustic Properties of Microperforated Panels and Their Optimization by Simulated Annealing. Unpublished doctoral dissertation, Universidad Politécnica de Madrid, Madrid.
[15] ISO 10534-1, Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes – Part1: Using standing wave ratio, 1996.
[16] ISO 10534-2, Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes – Part2: Transfer-function method, 1998.
[17] ISO 354, Acoustic measurement of sound absorption in a reverberation room, 2003.
[18] J. Kang and H. V. Fuchs (1999). Predicting the absorption of open weave textiles and micro-perforated membranes backed by an air space. J. Sound Vib. 220, 905-920.
[19] Kimihiro Sakagami, Masayuki Morimoto and Motoki Yairi (2007). Recent Developments in Application of Microperforated Panel Absorbers. 14th International Congress on Sound & Vibration, Crains.
[20] K. Sakagami, M. Morimoto, M. Yairi (2009). A note on the relationship between the sound absorption by micro-perforated panels and panel/membrane-type absorbers. Appl. Acoust. 70, 1131–1136.
[21] L. Jaouen and F. X. Bécot (2011). Acoustical characterization of perforated facings. J. Acoust. Soc. Am. 129(3), 1400-1406.
[22] M. Toyoda, R. L. Mu and D. Takahashi (2010). Relationship between Helmholtz-resonance absorption and panel-type absorption in finite flexible microperforated-panel absorbers. Appl. Acoust. 71, 315–32.
[23] N. Atalla and F. Sgard (2007). Modeling of perforated plates and screens using rigid frame porous models. J. Sound Vib. 303, 195-208.
[24] T. Dupont, G. Pavic and B. Laulagnet (2003). Acoustic properties of lightweight microperforated plate systems. Acta Acustica united with acustica 89, 201-212.
[25] Y. Y. Lee, E. W. M. Lee and C. F. Ng (2005). Sound absorption of a finite flexible micro-perforated panel backed by an air cavity. J. Sound Vib. 287, 227–243.
[26] Y. Y. Lee, E. W. M. Lee (2007). Widening the sound absorption bandwidths of flexible micro-perforated curved absorbers using structural and acoustic resonances. Int. J. Mech. Sci. 49, 925–934.
[27] Z. Tao, B. Zhang, D. W. Herrin and A. F. Seyber (2005). Prediction of Sound-Absorbing Performance of Micro-Perforated Panels using the Transfer Matrix Method. University of Kentucky.