| 研究生: |
黃致凱 Huang, Zhi-Kai |
|---|---|
| 論文名稱: |
壓痕技術於受快速熱退火與機械疲勞之電漿輔助化學氣相沉積氮化矽薄膜之破壞與介面特性檢測與分析 Fracture and Interfacial Properties Characterization of PECVD Silicon Nitride Films Subjected to Rapid Thermal Annealing and Mechanical Fatigue Loading Using Indentation Technique |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 198 |
| 中文關鍵詞: | PECVD氮化矽薄膜 、壓痕測試 、快速熱退火製程 、疲勞破壞 、破壞韌性 、殘留應力 |
| 外文關鍵詞: | PECVD silicon nitride, indentation method, rapid thermal annealing, fatigue, fracture toughness, residual stress |
| 相關次數: | 點閱:172 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化矽薄膜由於具有電絕緣作用、及在高溫高濕度的環境之下不易被破壞和被氧化及水氣滲透的特性以及可當作機械材料等特性,故常應用於半導體製程或IC元件,然而當使用氮化矽薄膜應用半導體製程或IC元件時,薄膜的機械性質容易影響到半導體製程的良率或微系統元件的可靠度,例如:當薄膜應用在IC元件或MEMS可動元件時,可能受到溫度變化所造成的熱疲勞或週期性外力所造成的機械疲勞,對元件造成破壞,因而降低薄膜元件的可靠度與性能,由此可知薄膜材料的性質是影響微元件的良率與可靠度的重大因素。本文以在兩種不同PECVD製程壓力環境下沉積於單晶矽底材的 PECVD 氮化矽薄膜為測試對象,探討薄膜經過不同退火溫度與時間之快速熱退火製程以及機械疲勞後之破壞性質。本文藉由微米與奈米壓痕測試儀,經由觀測薄膜裂縫,推估薄膜之殘留應力、破壞韌性、介面強度及疲勞裂縫傳播等材料破壞特性。實驗結果顯示上述機械性質與薄膜沉積製程參數相關,例如: 在較低壓下沉積之薄膜,其殘留應力較低,且擁有較佳之介面強度。另外,快速熱退火製程雖可提升薄膜的介面強度,使薄膜不容易與基材產生脫層,但其伴隨生成之高殘留張應力卻在實質上減少了氮化矽薄膜之破壞韌性,此外,也使的薄膜表面的裂紋在機械疲勞的過程中容易成長,不利結構安全。研究結果可提供相關微系統結構可靠度評估應用,以提升微系統元件與積體電路結構可靠度與機械良率。
PECVD silicon nitride films are commonly used in microsystems and integrated circuits as structural or transduction medias and the reliability of nitride films subjected to external mechanical loading and thermal annealing are traditional major concerns for structural and process designs. In particular, the post-deposition thermal annealing dependent elastic and fracture properties should be investigated for device performance evaluation and the design optimization for post-deposition thermal annealing process. In addition, it is also important to evaluate its fatigue properties since the associated devices may encounter possible mechanical and thermal fatigue loadings. In this work, the mechanical properties of PECVD silicon nitride deposited on silicon substrates by two different processing temperatures (i.e., 300 and 350C) and pressures (i.e., 1 and 5 torrs) subjected to rapid thermal annealing between 200 – 800 C for 1 to 5 minutes are investigated. Their residual stress and elastic modulus are characterized by examining the specimen curvature and by a MTS nanoindentor. On the other hand, by examining the crack length of pre-indented specimens and performing data reduction using Marshall/Lawn or Zhang’s relations, it is possible to deduce their fracture toughness. Finally, by utilizing a self-designed and assembled fatigue testing machine, the crack propagations of pre-cracked specimens can be monitored and the associated fatigue life can be estimated. The experimental results indicate that the residual stress, fracture toughness and interfacial strength, as well as the fatigue crack propagation were strongly depend on the processing conditions such as deposition temperatures and chamber pressures. Preliminary results indicate that the specimen deposited at a lower temperature and a lower pressure exhibited a much less residual tensile stress and a better interface strength. On the other hand, it is found that RTA can enhance the interfacial strength but the generated high tensile strength can actually reduce the equivalent toughness and leads to structural reliability concerns. For example, the experimental results also indicate that a larger temperature ramp down rate can induce a higher residual stress in nitride and this could be critical for process design. In summary, the characterization results should be possible to provide useful information for correlating the mechanical reliability with the processing parameters for future structural design optimization and for improving the structural integrity of PECVD silicon nitride films for MEMS and IC fabrication.
參考文獻
[1] 莊達人, VLSI製造技術, 高立出版社, 1999.
[2] A. C. Adams, F. B. Alexander, C. D. Capio, and T. E. Smith, "Characterization of plasma-deposited silicon dioxide," Journal of The Electrochemical Society, vol.128, pp. 1545-1551, 1981.
[3] H. Huang, K. Winchester, Y. Liu, X. Z. Hu, C. A. Musca, J. M. Dell and L. Faraone, "Determination of mechanical properties of PECVD silicon nitride thin films for tunable MEMS Fabry–Pérot optical filters," Journal of Micromechanics and Microengineering, vol. 15, pp. 608-614, 2005.
[4] K. S. Chen, X. Zhang, and R. Ghodssi, "Residual stress and failure modeling of thick PECVD oxide films for MEMS application,"第一屆海峽兩岸微系統研討會會議論文, pp. 264-269, (Tainan, Taiwan, May, 2000.)
[5] H. J. Schliwinski, U. Schnakenberg, and W. Windbracke, "Thermal annealing effects on the mechanial properties of plasma-enhanced chemical vapor deposition silicon oxide films," Journal of The Electrochemical Society, vol.139, pp. 1730-1735, 1992.
[6] H. Huang, K. J. Winchester, A. Suvorova, and B. R. Lawn, Y. Liud, X. Z. Hu, J. M. Dell, and L. Faraone, "Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films," Materials Science and Engineering A, vol.435-436, pp.453-459, 2006.
[7] P. L. Ong, J. Wei, F. E. H. Tay, and C. Illiescu, "A new fabrication method for low stress low stress PECVD-SiNx layers," Journal of Physics, vol. 34, pp.764-769, 2006.
[8] D. Beegan, S. Chowdhury, and M. T. Laugier, "The nanoindentation behaviour of hard and soft films on silicon substrates," Thin Soild Films, vol. 466, pp. 167-174, 2004.
[9] R. Saha and W. D. Nix, "Effects of the substrate on the determination of thin film mechanical properties by nanoindentation," Acta Materialia, vol. 50, pp. 23-38, 2002.
[10] S. King, R. Chu, G. Xu, and J. Huening, "Intrinsic stress effect on fracture toughness of plasma enhanced chemical vapor deposited SiNx:H films," Thin Solid Films, vol. 518, pp. 4898-4907, 2010.
[11] X. Li and B. Bhushan, "Measurement of fracture toughness of ultra-thin amorphous carbon films," Thin Solid Films, vol. 315, pp. 214-221, 1998.
[12] H. Hirakata, M. Kitazawa, T. Kitamura, "Fatigue crack growth along interface between metal and ceramics submicron-thick films in inert environment," Acta Materialia, vol. 54, pp. 89-97, 2006.
[13] M. Huang, Z. Suo, Q. Ma, and H. Fujimoto, "Thin film cracking and ratcheting caused by temperature cycling," Journal of Materials Research, vol. 15, pp. 1239-1242, 2000.
[14] 陳建元, 電漿輔助化學氣相沉積二氧化矽薄膜之熱應力與破壞分析, 國立成功大學機械工程學系碩士論文, 2001.
[15] 林士淵, 電漿輔助化學氣相沉積二氧化矽薄膜之內應力分析, 國立成功大學機械工程學系碩士論文, 2001.
[16] 陳拓丞, 應用因次分析法於奈米壓痕試驗之理論分析與數值模擬:殘留應力、基材效應與黏彈性質之研究, 國立成功大學機械工程學系碩士論文, 2005.
[17] 顏宏益, 應用奈米壓痕技術於塊狀與薄膜材料之機械性質檢測與分析, 國立成功大學機械工程學系碩士論文, 2007.
[18] 吳秉欣, 磁控濺鍍氮氧化矽與電漿輔助化學氣相沈積氮化矽薄膜材料機械性質檢測和力學分析及其在微系統之應用, 國立成功大學機械工程學系碩士論文, 2010.
[19] 微機電系統技術與應用, 行政院國家科學委員會精密儀器發展中心, 2003
[20] K. J. Winchester and J. M. Dell, "Tunable Fabry–P´erot cavities fabricated from PECVD silicon nitride employing zinc sulphide as the sacrificial layer, "Journal of Micromechanics and Microengineering, " vol. 11, pp. 589-594, 2001.
[21] K. A. Lohner, Microfabricated Refractory Ceramic Structures for Micro Turbomachinery, S.M. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA., 1999.
[22] A. Kaushik, H. Kahn, and A. H. Heuer, "Wafer-Level mechanical characterization of silicon nitride MEMS," Journal of microelectromechanical systems, vol. 14, pp. 359-367, 2005.
[23] W. H. Chuang, R. K. Fettig, and R. Ghodssi, "An electrostatic actuator for fatigue testing of low-stress LPCVD silicon nitride thin films," Sensors and Actuators A: Physical, vol. 121, pp. 557-565, 2005.
[24] C. Eberl, R. Spolenak, E. Arzt, F. Kubat, A. Leidl, W. Ruile, and O. Kraft, "Ultra high-cycle fatigue in pure Al thin films and line structures," Materials Science and Engineering: A, vol. 421, pp. 68-76, 2006.
[25] C. Mitterer, F, Holler, F Üstel, and D Heim, "Application of hard coatings in aluminium die casting — soldering, erosion and thermal fatigue behaviour," Surface and Coatings Technology, vol. 125, pp. 233-239, 2000.
[26] D. Zhu and R. A. Miller, " Investigation of thermal high cycle and low cycle fatigue mechanisms of thick thermal barrier coatings," Materials Science and Engineering A, vol. 245, pp. 212-223, 1998.
[27] G. G. Stoney, "The tension of thin metallic films deposited by electrolysis," Proceedings of the Royal Society, vol. 82, pp. 172, 1909.
[28] J. W. Hutchinson and Z. Suo, "Mixed mode cracking in layered materials," Advances in applied mechanics, vol. 29, pp. 63-191, 1991.
[29] K. S. Chen, J. Y. Chen, and S.Y. Lin, "Fracture analysis of thick plasma-enhanced chemical vapor deposited oxide films for improving the structural integrity of power MEMS," Journal of Micromechanics and Microengineering, vol. 12, pp. 714-722, 2002.
[30] H. Windischmann, " Intrinsic stress and mechanical properties of hydrogenated silicon carbide produced by plasma-enhanced chemical vapor deposition," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 9, pp.2459-2463, 1991.
[31] P. Paduschek, Ch. Höpfl, amd H.Mitlehner, "Hydrogen-related mechanical stress in amorphous silicon and plasma-de posited," Thin Soild Film, vol. 110, pp.291-304, 1983.
[32] P. Paduschek, P. Eichinger, G. Kristen, and H. Mitlehn, "Hydrogen content and mechanical stress in glow discharge amorphous silicon," Nuclear Instruments and Methods in Physics Research, vol. 199, pp.421-425, 1982.
[33] A. Picciotto , A. Bagolini, P. Bellutti, M. Boscardin, "Influence of interfaces density and thermal processes on mechanical stress of PECVD silicon nitride," Applied Surface Science, vol. 256, pp. 251-255, 2009.
[34] X. Z. Zhang, T. Y. Zhang, M. Wong, and Y. Zhoar, " Rapid thermal annealing of polysilicaon thin film," Journal of Microelectromechanical System, vol. 7, pp. 356-364, 1998.
[35] K. S. Chen, X. Zhang, and S. Y. Lin, "Intrinsic stress generation and relaxation of plasma-enhanced chemical vapor deposited oxide during deposition and subsequent thermal cycling," Thin Solid Films, vol. 434, pp. 190-202, 2003.
[36] H. Xiao, Introduction to semiconductor manufacturing technology, Prentice Hall, 2001.
[37] 姜庭隆, 半導體製程, 滄海書局, 2001.
[38] W. C. Oliver and G. M. Pharr, " Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology," Journal of Materials Research, vol. 19, pp. 3-20, 2004.
[39] R. B. King, "Elastic analysis of some punch problems for a layered medium," International Journal of Solids and Structures, vol. 23, pp. 1657-1664, 1987
[40] R. Saha and W. D. Nix, "Effects of the substrate on the determination of thin film mechanical properties by nanoindentation," Acta Materialia, vol. 50, pp. 23-38, 2002.
[41] T. Y. Tsui, W. C. Oliver, and G. M. Pharr, "Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy," Journal of Materials Research, vol. 11, pp. 752-759, 1995.
[42] A. Bolshakov, W. C. Oliver, and G. M. Pharr, "Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations," Journal of Materials Research, vol. 11, pp. 760-768, 1996.
[43] K. S. Chen, T. C. Chen, and K. S. Ou, "Development of semi-empirical formulation for extracting materials properties from nanoindentation measurements:Residual stresses, substrate effect, and creep," Thin Solid Films, vol. 516 , pp. 1931–1940, 2008.
[44] A. C. Fischer-Cripps, Nanoindentation, Springer, New York, 2000.
[45] D. B. Marshall and B. R. Lawn, "Indentation of brittle materials, microindentation techniques in materials science and engineering," ASTM STP 889, pp. 26-46, 1986.
[46] D. S. Harding, W. C. Oliver, and G. M. Pharr, "Cracking during nanoindentation and its use in the measurement of fracture toughness," MRS Bulletin, vol. 356, pp. 663-668, 1995.
[47] D. Casellas, J. Caro, S. Molas, J. M. Prado and I. Valls, "Fracture toughness of carbides in tool steels evaluated by nanoindentation," Acta Materialia, vol. 55, pp. 4277-4286, 2007.
[48] M. T. Laugier, " New formula for indentation toughness in ceramics," Journal of Materials Science Letters, vol. 6, pp.355-356 ,1987.
[49] R. D. Dukino, and M.V. Swain, "Comparative measurement of indentation fracture toughness with berkovich and vickers indenters," Journal of the American Ceramic Society, vol. 75, pp. 3299–3304, 1992.
[50] T. Y. Zhang, L. Q. Cen and R. Fu, "Measurements of residual stresses in thin films deposited on silicon wafers by indentation fracture," Acta mater , vol. 47, pp. 3869-3878, 1999.
[51] P. H. Wu, I. K. Lin, H. Y. Yan, K. S. Ou, K. S. Chen and X. Zhang, " Mechanical Properties Characterization of Sputtered and Plasma Enhanced Chemical Deposition (PECVD) Silicon Nitride Films after Rapid Thermal Annealing, " (in preparation).
[52] P. C. Paris, and F. Erdogan, "A critical analysis of crack progation laws," Journal of Basic Engineering, vol.85, pp.528-534, 1963.
[53] X. Li, and B. Bhushan, "Measurement of fracture toughness of ultra-thin amorphous carbon films," Thin Solid Films, vol.315, pp.214-221, 1998.
[54] C. H. Tsau, S. M. Spearing, and M. A. Schmidt, "Fabrication of wafer-level thermocompression bonds," Journal of Microelectronechanical Systems, vol. 11, pp. 641-647, 2002.
[55] J. Zheng, M. Kato, S. Takezoe, and K. Nakasa, "Evaluation of wear resistance of sputtered amorphous SiCN film and measurement of delamination strength of film by micro edge-indent method," Journal of the Society of Materials Science, vol. 54, pp. 1022-1029, 2005.
[56] A. A. Volinsky, N. R. Moody, and W. W. Gerberich, "Interfacial toughness measurements for thin films on substrates," Acta Materialia, vol. 50, pp. 441-466, 2002.
[57] S. P. Timoshenko and J. N. Goodier, Theory of elasticity, McGraw-Hill,1970.
[58] M. F. Doerner, and W. D. Nix, "Stresses and deformation process1es in thin films on substrates," CRC Critical Reviews in Solid State and Materials Sciences, vol. 14, pp. 225 - 268, 1988.
[59] P. Chaundri, "Grain Growth and Stress Relief in Thin Films," Journal of Vacuum Science and Technology, vol. 9, pp. 520, 1973.
[60] K. H. Mller, "Dependence of Thin-Film Microstructure on deposition rate by means of a computer simulation." Journal of Applied Physics, vol. 58, pp. 2573, 1985.
[61] X. Zhang, K. S. Chen, and S. M. Spearing, "Thermo-mechanical behavior of thick PECVD oxide films for power MEMS applications," Sensors and Actuatiors A:Physical, vol. 103, pp. 263-270, 2003.
[62] M. P. Hughey and R. F. Cook, "Massive stress changes in plasma-enhanced chemical vapor deposited silicon nitride films on thermal cycling," Thin Solid Films, vol. 460, pp. 7-16, 2004.
[63] S. A. Jonas, T. J. Stapinski, E. P. Walasek, and M. K. Chrabaszcz, "Amorphous Hydrogenated Silicon--Nitrogen (a-Si1-xNx:H) Films Deposited by PECVD," Journal of Wide Bandgap Materials, vol. 9, pp.83-92, 2001.
[64] T. Li, J. Kanicki, M. Fitzner, and W. L. Warren, "Investigation of hydrogen evolution and dangling bonds creation mechanism in amorphous silicon nitride thin films," Active Matrix Liquid Crystal Displays '95, Second International Workshop, pp. 129-132, 1995.
[65] I. M. F. L. Martínez, G. González-Díaz, B. Selle, and I. Sieber, "Influence of rapid thermal annealing processes on the properties of SiNx:H films deposited by the electron cyclotron resonance method," Journal of Non-Crystalline Solids, vol. 227-230, pp. 523-527, 1998.
[66] Y. Ma, Y. L. Huang, R. Job, and W. R. Fahrner, " Dissociation,transformation, and recombination of Si-H bonds in hydrogenated crystalline silicon determined by in situ micro-Raman spectroscopy," Physical Review B, vol. 71, pp. 045206.1-045206.6, 2005.
[67] K. S. Chen, Materials Characterization and Structural Design of Ceramic Micro Turbomachinery, Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge , MA, 1999 .
[68] J. Wei, P. L. Ong, F. E. H. Tay, and C. Iliescu, "A new fabrication method for low stress PECVD SiNx layers for biomedical applications," Thin Solid Films, vol. 516, pp.5181-5, 2008.
[69] H. Y. Yan, K. S. Ou, K. S. Chen, "Mechanical properties measurement of PECVD silicon nitride after rapid thermal annealing using nanoindentation technique," Strain, vol. 44 , pp. 259-266, 2008.
[70] 江智揚, 新型奈米壓痕基材效應模型建立與其在薄膜材料機械性質檢測之應用, 國立成功大學奈米科技暨微系統工程研究所碩士論文, 2011.
[71] I. K Lin, P. H Wu, K. S Ou, K. S Chen, and X. Zhang, "The Tunability in Mechanical Properties and Fracture Toughness of Sputtered Silicon Oxynitride Thin Films for MEMS-based Infrared Detectors, " MRS Fall Meeting, Boston, USA, 2009.
[72] P. F. Becher, "Microstructural design of toughened ceramics," Journal of the American Ceramic Society, vol.74, pp. 255-269,1991.
[73] Y. Yang, Y. Liu, and J. M. Dell, "Effect of heat treatment on internal stresses in PECVD SiNxHy thin films," IEEE conference on Optoelectronic and Microelectronic Materials and Devices(Sydney, New South Wales, Australia, July 28- August 1, 2008)
[74] N. Jehanathan, Y. Liu, B. Walmsley, J. Dell, L. Faraone, "Thermal stability of PECVD SiNx films," IEEE conference on Optoelectronic and Microelectronic Materials and Devices(Brisbane, Queensland, Australia, July 3-7, 2006)
[75] R. D. Dukino, and M. V. Swain, "Comparative measurement of indentation fracture toughness with berkovich and vickers indenters, " Journal of the American Ceramic Society, vol. 75, pp. 3299-3304, 1992.
[76] R. S. Figliola and D. E. Beasley, Theory and Design for Mechanical Measurements, 4th Edition, John Wiley & Sons, New York, 2006.