| 研究生: |
陳宣佑 Chen, Xuan-You |
|---|---|
| 論文名稱: |
透過鹵素離子控制伽凡尼置換反應合成釕中空奈米結構 Driving the Galvanic replacement reaction by halogen ions to synthesize Ru hollow nanostructures |
| 指導教授: |
吳欣倫
Wu, Hsin-Lun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 銅奈米立方體 、釕 、中空奈米結構 、伽凡尼置換反應 、鹵素離子 |
| 外文關鍵詞: | Cu nanocubes, Ru, hollow nanostructure, galvanic replacement reaction, halogen ions |
| 相關次數: | 點閱:80 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中空奈米結構因其具有高表面積以及較多的活性位點而受到關注,在合成中空奈米結構上,伽凡尼反應為較為常用的方法之一,整個反應的進行是由兩種金屬間還原電位的差異來驅動的,但是在反應過程中可能會因為種種因素而使伽凡尼反應無法有效地進行。本實驗是利用添加鹵素離子來控制伽凡尼置換反應的進行,並透過添加不同的鹵素離子來合成出不同的釕中空奈米結構,我們成功地透過添加溴離子或是氯離子來使原本不容易進行伽凡尼置換反應的銅奈米立方體以及乙酰丙銅釕(Ⅲ)(Ru(acac)3)進行置換反應,並合成出了釕奈米籠以及三角化八面體奈米框架,我們也對所合成出的兩種不同釕中空奈米結構進行結構上的鑑定。
Hollow nanostructures exhibit promising catalytic activities with the advantages of high surface area and large number of active sites. The galvanic replacement reaction is one of the methods that commonly used. In some cases, it has been found that halogen ions can promote the occurrence of galvanic replacement reactions effectively. In this study, we used Cu nanocubes as the sacrificial template, and successfully synthesized different types of Ru hollow nanostructures by adding the halogen ions to induce the galvanic replacement reaction between Cu nanocubes and Ru(acac)3. We also used different types of halogen ions to control the morphology of Ru hollow nanostructures.
1.6 參考文獻
(1) Song, K. H.; Kim, C.; Cobley, C. M.; Xia, Y.; Wang, L. V. Nano Lett., 2009, 9, 183.
(2) Chen, J., et al. Small, 2010, 6, 811.
(3) Rycenga, M., et al. Phys. Chem. Chem. Phys., 2009, 11, 5903.
(4) Park, J., et al. Chem. Soc. Rev., 2018, 47, 8173.
(5) Yavuz, M. S., et al. Nat. Mater., 2009, 8, 935.
(6) Lee, J.; Kim, S. M.; Lee, I. S. Nano Today, 2014, 9, 631.
(7) Wang, L.; Yamauchi, Y. J. Am. Chem. Soc., 2013, 135, 16762.
(8 ) Ye, H., et al. Nano Lett. 2016, 16, 4, 2812.
(9) Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y. Adv. Mater., 2013, 25, 6313.
(10) Jenkins, S. V.; Gohman, T. D.; Miller, E. K.; Chen, J. J. Chem. Educ., 2015, 92, 1056.
(11) Chen, S.; Zhang, X.; Hou, X.; Zhou, Q.; Tan, W. Cryst. Growth Des., 2010, 10, 1257.
(12) Yin, Y., et al. Science, 2004, 304, 711.
(13) Fan, H. J.; Gösele, U.; Zacharias, M. Small, 2007, 3, 1660.
(14) Zhang, L., et al. Science, 2015, 349, 412.
(15) Sun, Y.; Xia, Y. J. Am. Chem. Soc., 2004, 126, 3892.
(16) González, E.; Arbiol, J.; Puntes, V. F. Science, 2011, 334, 1377.
(17) Moreau, L. M., et al. J. Am. Chem. Soc., 2017, 139, 12291.
(18) Yang, Y.; Liu, J.; Fu, Z. W.; Qin, D. J. Am. Chem. Soc., 2014, 136, 8153.
(19) Zhang, H., et al. J. Am. Chem. Soc., 2011, 133, 6078.
(20) Yu, X.; Wang, D.; Peng, Q.; Li, Y. Chem. Commun., 2011, 47, 8094.
(21) Yu, X., et al. Chem.Eur.J., 2016, 22, 4960.
(22) Xiong, Y., et al. J. Am. Chem. Soc., 2007, 129, 3665.
(23) Long, R.; Zhou, S.; Wiley, B. J.; Xiong, Y. Chem. Soc. Rev., 2014, 43, 6288.
(24) Zhang, L., et al. Catal. Sci. Technol. 2014, 4, 1939.
(25) Xu, Q. C.; Lin, J. D.; Fu, X. Z.; Liao, D. W. Catal. Commun., 2008, 9, 1214.
(26) Kim, S., et al. Catalysis Today, 2012, 185, 131.
(27) Zehl, G., et al. Angew. Chem. Int. Ed., 2007, 46, 7311.
(28) Kitano, M., et al. Nat. Commun. 2015, 6, 6731.
2.5 參考文獻
(1) Lyu, L. M., et al. Chem. Mater., 2017, 29, 5681.
(2) Yu, X.; Wang, D.; Peng, Q.; Li, Y. Chem. Commun., 2011, 47, 8094.
(3) Guo, H., et al. J. Phys. Chem. C, 2014, 118, 9801.
(4) Chen, H.; Wu, R.; Shen, P. K. ACS Sustainable Chem. Eng., 2020, 8, 1520.
(5) Skinner, W. M.; Prestidge, C. A.; Smart, R. S. C. Surf Interface Anal, 1996, 24, 620.
(6) Huang, C. C. et al. Chem. Eur. J., 2006 , 12 ,3805.
(7) Guo, X.; Tan, Y. Phys. Chem. Chem. Phys., 2015, 17, 31956.
(8) Yu, X., et al. Chem.Eur.J., 2016, 22, 4960.
(9) Cui, C. et al. Nat. Mater., 2013, 12, 765.