| 研究生: |
汪柏翰 Wang, Po-Han |
|---|---|
| 論文名稱: |
微藻能源系統設計與優化 Design and Optimization of Microalgal Energy Systems |
| 指導教授: |
吳煒
wu, Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 微藻生質柴油 、生命週期評估 、混合整數非線性規劃 、共汽化混合發電系統 |
| 外文關鍵詞: | Microalgal energy system, MINLP, LCA, Algal biodiesel |
| 相關次數: | 點閱:61 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以微藻為生質原料所發展的再生能源具有很大的潛力,因其高生長速度、高油脂含量、固碳效率高等,這些優點使微藻成為目前熱門生質原料的研究主題,微藻高油脂含量可藉由轉酯化反應,將其轉為生質柴油,本研究利用Aspen Plus以及實驗文獻數據設計出一微藻能源系統,其程序包含微藻培養、收集、除水、破壁、藻油萃取、乾燥以及生質柴油製造程序與煤共汽化發電程序,此系統模型建立於GAMS中,模型屬於非線性整數規劃(MINLP),在數學規劃時,可以同時考慮不同操作策略的組合以及操作變數的數值,找出程序中全域最優化的碳排結果。
此系統可視為一種分散式能源系統,電力產生的方式為利用汽化所得的合成氣燃料,通入固態氧化物燃料電池與氣渦輪(SOFC/GT)之混合發電系統,汽化的原料是再利用微藻殘渣作為進料,以利提升整體能源效率。系統產物為由藻油轉化而得的生質柴油與從汽電共生系統所產生之電力,藉由程序優化後,發電系統的效率為52.99%其每度電的相當碳排放0.3379 kg-CO2/kW hr。最後我們藉由生命週期分析(Life cycle analysis),來評估此系統對於溫室效應的減緩是否有益。
呈現結果以每單位燃料能量含量之碳排放作為基準,將此系統微藻生質柴油與石化柴油作為比較,結果顯示此系統所產生之生質柴油其石化燃料使用量與生質能源輸出的比值為0.4778,其單位能量的碳排為47.27 e g-CO2/MJ,數據顯示出微藻柴油的總碳排與石化柴油相比,降低了46.01%,可應證微藻柴油具有潛力可作為新的替代柴油。
We built up a microalgal energy system including cultivation, dewatering, harvesting, extraction, biodiesel production, gasification, and power output. The aim of biodiesel production coupling with integrated gasification fuel cell (IGFC) system is to completely utilize the whole microalgae, including the oil and the residual part. The model built up is based on the results from Aspen Plus®, experimental data, and literature. The mathematical formulation of the model is coded in GAMS® as a mixed-integer nonlinear programming (MINLP) problem. Through life cycle analysis (LCA) under the constraints of mass balance and energy balance, we quantify the greenhouse gas emission of per unit energy content of biodiesel. Bilinear relaxation with Big-M piecewise partitions is applied in the algorithm to enhance the performance of computing nonconvex bilinear term.
The final results of global warming potential (GWP) indicate that the system with the scale of nearly 300-ton biodiesel per year has positive greenhouse gas (GHG) reduction performance compared to fossil diesel. The value of GWP of biodiesel generated from this system is 47.27 g e-CO2, which reduces 46.01% of GHG emission. Therefore, we can conclude that microalgae have the potential to be the candidate of renewable energy.
[1] Tsai W-T. Energy sustainability from analysis of sustainable development indicators: A case study in Taiwan. Renewable and Sustainable Energy Reviews. 2010;14:2131-8.
[2] Fox B. Why Taiwan's Sustainable Energy Policy Matters. The Journal of Sustainable Development. 2011;6:210-21.
[3] AMOCO, P. B. Statistical review of the world energy. Report. 1999.
[4] WBCSD. World Business Council for Sustainable Development. Mobility. 2001.
[5] Zaimes GG, Khanna V. Microalgal biomass production pathways: evaluation of life cycle environmental impacts. Biotechnology for Biofuels. 2013;6:1-11.
[6] Brennan L, Owende P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews. 2010;14:557-77.
[7] Tsukahara K, Sawayama S. Liquid Fuel Production Using Microalgae. Journal of the Japan Petroleum Institute. 2005;48:251-9.
[8] Chen W-H, Kuo P-C. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy. 2010;35:2580-6.
[9] Sarvaramini A, Assima GP, Larachi F. Dry torrefaction of biomass – Torrefied products and torrefaction kinetics using the distributed activation energy model. Chemical Engineering Journal. 2013;229:498-507.
[10] Emami-Taba L, Irfan MF, Wan Daud WMA, Chakrabarti MH. Fuel blending effects on the co-gasification of coal and biomass – A review. Biomass and Bioenergy. 2013;57:249-63.
[11] García G, Arauzo J, Gonzalo A, Sánchez JL, Ábrego J. Influence of feedstock composition in fluidised bed co-gasification of mixtures of lignite, bituminous coal and sewage sludge. Chemical Engineering Journal. 2013;222:345-52.
[12] Emami Taba L, Irfan MF, Wan Daud WAM, Chakrabarti MH. The effect of temperature on various parameters in coal, biomass and CO-gasification: A review. Renewable and Sustainable Energy Reviews. 2012;16:5584-96.
[13] Saw WL, Pang S. Co-gasification of blended lignite and wood pellets in a 100kW dual fluidised bed steam gasifier: The influence of lignite ratio on producer gas composition and tar content. Fuel. 2013;112:117-24.
[14] Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews. 2010;14:217-32.
[15] Brentner LB, Eckelman MJ, Zimmerman JB. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol. 2011;45:7060-7.
[16] Clarens AF, Nassau H, Resurreccion EP, White MA, Colosi LM. Environmental impacts of algae-derived biodiesel and bioelectricity for transportation. Environ Sci Technol. 2011;45:7554-60.
[17] Lam MK, Lee KT. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology advances. 2012;30:673-90.
[18] Lardon L, Helias A, Sialve B, Steyer J-P, Bernard O. Life-Cycle Assessment of Biodiesel Production from Microalgae. ENVIRONMENTAL SCIENCE & TECHNOLOGY. 2009;43:6475-82.
[19] Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic Engineering of Algae for Enhanced Biofuel Production. Eukaryot Cell. 2010;9:486-501.
[20] Herzog H, Golomb D. Carbon Capture and Storage from Fossil Fuel Use. Encyclopedia of Energy. 2004;1:1-11.
[21] Keffer JE, Kleinheinz GT. Use of Chlorella vulgaris for CO(2) mitigation in a photobioreactor. Journal of industrial microbiology & biotechnology. 2002;29:275-80.
[22] Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol. 2010;101:1406-13.
[23] Sierra E, Acién FG, Fernández JM, García JL, González C, Molina E. Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal. 2008;138:136-47.
[24] Davis R, Aden A, Pienkos PT. Techno-economic analysis of autotrophic microalgae for fuel production. Applied Energy. 2011;88:3524-31.
[25] Kadam KL. Environmental implications of power generation via coalmicroalgae cofiring. Energy. 2002;27:905-22.
[26] Barros AI, Gonçalves AL, Simões M, Pires JCM. Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews. 2015;41:1489-500.
[27] Vandamme D, Foubert I, Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in biotechnology. 2013;31:233-9.
[28] Gemert V, Wladimir G. The Delta dryer: Theoretical and technological development of an energyefficient dryer for sludge. 2009:154 pages.
[29] Weschler MK, Barr WJ, Harper WF, Landis AE. Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock. Bioresource Technology. 2014;153:108-15.
[30] Shen Y. Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Adv. 2014;4:49672-722.
[31] Chisti Y. Biodiesel from microalgae beats bioethanol. Trends in biotechnology. 2008;26:126-31.
[32] Tan T, Lu J, Nie K, Deng L, Wang F. Biodiesel production with immobilized lipase: A review. Biotechnology advances. 2010;28:628-34.
[33] Galadima A, Garba Z. Catalytic Synthesis of Ethyl Ester From Some Common Oils. Science World Journal. 2009;4:1-5.
[34] Zhang Y. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology. 2003;89:1-16.
[35] Pokoo-Aikins G, Nadim A, El-Halwagi MM, Mahalec V. Design and analysis of biodiesel production from algae grown through carbon sequestration. Clean Technologies and Environmental Policy. 2009;12:239-54.
[36] Meher LC, Sagar DV, Naik SN. Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews 10:248-68.
[37] Prommuak C, Pavasant P, Quitain AT, Goto M, Shotipruk A. Microalgal Lipid Extraction and Evaluation of Single-Step Biodiesel Production. Engineering Journal. 2012;16:157-66.
[38] Sivasamy A, Cheah KY, Fornasiero P, Kemausuor F, Zinoviev S, S M. Catalytic applications in the production of biodiesel from vegetable oils. ChemSusChem. 2009;2:278-300.
[39] Vicente G, Martı´nez M, Aracil J. Kinetics of Brassica carinata Oil Methanolysis. Energy & Fuels. 2006;20:1722-6.
[40] Georgogianni KG, Kontominas MG, Pomonis PJ, Avlonitis D, Gergis V. Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Processing Technology. 2008;89:503-9.
[41] Jurado MBG, Plesu V, Ruiz JB, Ruiz AEB, Tuluc A, Llacuna JL. Simulation of a Hybrid Reactive Extraction Unit. Biodiesel Synthesis. Chemical Engineering Transactions. 2013;35:205-10.
[42] Connemann J, J.Fischer. Biodiesel in Europe 1998: Biodiesel Processing Technologies. International Liquid Biofuels Congress. 1998;15.
[43] Jarungthammachote S, Dutta A. Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energy Conversion and Management. 2008;49:1345-56.
[44] Koukkari P, Pajarre R. Introducing mechanistic kinetics to the Lagrangian Gibbs energy calculation. Computers & Chemical Engineering. 2006;30:1189-96.
[45] Ramzan N, Ashraf A, Naveed S, Malik A. Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste. Biomass and Bioenergy. 2011;35:3962-9.
[46] Buragohain B, Mahanta P, Moholkar VS. Biomass gasification for decentralized power generation: The Indian perspective. Renewable and Sustainable Energy Reviews. 2010;14:73-92.
[47] González JF, Román S, Bragado D, Calderón M. Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production. Fuel Processing Technology. 2008;89:764-72.
[48] Gai C, Dong Y. Experimental study on non-woody biomass gasification in a downdraft gasifier. International Journal of Hydrogen Energy. 2012;37:4935-44.
[49] Wu K-T, Tsai C-J, Chen C-S, Chen H-W. The characteristics of torrefied microalgae. Applied Energy. 2012;100:52-7.
[50] Park S-W, Jang C-H, Baek K-R, Yang J-K. Torrefaction and low-temperature carbonization of woody biomass: Evaluation of fuel characteristics of the products. Energy. 2012;45:676-85.
[51] Nikoo MB, Mahinpey N. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass and Bioenergy. 2008;32:1245-54.
[52] Doherty W, Reynolds A, Kennedy D. The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation. Biomass and Bioenergy. 2009;33:1158-67.
[53] Jayah TH, Aye L, Fuller RJ, Stewart DF. Simulation Study of a Down-Draft Wood Gasifier Used to Produce Thermal Energy for Tea Drying. Biomass & Bioenergy. 2003;25:459-69.
[54] Baratieri M, Baggio P, Fiori L, Grigiante M. Biomass as an energy source: thermodynamic constraints on the performance of the conversion process. Bioresour Technol. 2008;99:7063-73.
[55] Lv PM, Xiong ZH, Chang J, Wu CZ, Chen Y, Zhu JX. An experimental study on biomass air-steam gasification in a fluidized bed. Bioresour Technol. 2004;95:95-101.
[56] Speidel M, Kraaij G, Wörner A. A new process concept for highly efficient conversion of sewage sludge by combined fermentation and gasification and power generation in a hybrid system consisting of a SOFC and a gas turbine. Energy Conversion and Management. 2015;98:259-67.
[57] El-Emam RS, Dincer I. Thermal modeling and efficiency assessment of an integrated biomass gasification and solid oxide fuel cell system. International Journal of Hydrogen Energy. 2015;40:7694-706.
[58] Jia J, Abudula A, Wei L, Sun B, Shi Y. Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system. Renewable Energy. 2015;81:400-10.
[59] Doherty W, Reynolds A, Kennedy D. Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus. Energy. 2010;35:4545-55.
[60] Bang-Møller C, Rokni M, Elmegaard B, Henriksen UB. Decentralized combined heat and power production by two-stage biomass gasification and solid oxide fuel cells. Energy. 2013;58:527-37.
[61] Kuchonthara P, Bhattacharya SP, Tsutsumi A. Energy Recuperation in Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Combined System. Journal of Power Sources. 2013;117:7-13.
[62] Liese EA, Gemmen RS. Performance Comparison of Internal Reforming Against External Reforming in a Solid Oxide Fuel Cell, Gas Turbine Hybrid System. Journal of Engineering for Gas Turbines and Power. 2005;127:86.
[63] Fredriksson Möller B, Arriagada J, Assadi M, Potts I. Optimisation of an SOFC/GT system with CO2-capture. Journal of Power Sources. 2004;131:320-6.
[64] Zhang W, Croiset E, Douglas PL, Fowler MW, Entchev E. Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models. Energy Conversion and Management. 2005;46:181-96.
[65] Taufiq BN, Kikuchi Y, Ishimoto T, Honda K, Koyama M. Conceptual design of light integrated gasification fuel cell based on thermodynamic process simulation. Applied Energy. 2015;147:486-99.
[66] Wang B, Gebreslassie BH, You F. Sustainable design and synthesis of hydrocarbon biorefinery via gasification pathway: Integrated life cycle assessment and technoeconomic analysis with multiobjective superstructure optimization. Computers & Chemical Engineering. 2013;52:55-76.
[67] Finnveden G, Hauschild MZ, Ekvall T, Guinee J, Heijungs R, Hellweg S, et al. Recent developments in Life Cycle Assessment. Journal of environmental management. 2009;91:1-21.
[68] Yue D, Pandya S, You F. Integrating Hybrid Life Cycle Assessment with Multiobjective Optimization: A Modeling Framework. Environ Sci Technol. 2016;50:1501-9.
[69] Edwards R, Larivé J-F, Beziat J-C. Well-to-wheels Analysis of Future Automotive Fuels and Powertrains in the European Context. JRC Scienticfic and Technical Report 2011;Version 3c.
[70] Lapuerta M, Armas O, Rodriguezfernandez J. Effect of biodiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science. 2008;34:198-223.
[71] Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG. Life-Cycle Assessment of Potential Algal Biodiesel Production in the United Kingdom: A Comparison of Raceways and Air-Lift Tubular Bioreactors. Energy & Fuels. 2010;24:4062-77.
[72] Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S. Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resources, Conservation and Recycling. 2009;53:434-47.
[73] Floudas CA. Nonlinear and MIxed-Integer Optimization - Fundamentals and Applications Oxford, New York. 1995.
[74] Duran MA, Grossmann IE. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Mathematical Programming. 1986;36:307-39.
[75] Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut approach to global optimization. Mathematical Programming. 2005;103:225-49.
[76] Gupte A, Ahmed S, Dey SS, Cheon MS. Pooling problems: relaxations and discretizations. 2013.
[77] P. G, McCormick. Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems. Mathematical Programming 1976;10:147-75.
[78] Al-Khayyal FA. Jointly constrained bilinear programs and related problems: An overview. Computers & Mathematics with Applications. 1990;19:53-62.
[79] Gounaris CE, Misener R, Floudas CA. Computational Comparison of Piecewise−Linear Relaxations for Pooling Problems. Ind Eng Chem Res. 2009;48:5742-66.
[80] Hirst N, Seung-Young C, Ciszewska A, Denysenko N, Iwasaki T, Nishimura I, et al. Power Generation from Coal - Measuring and Reporting Efficiency Performance and CO2 Emissions. International Energy Agency (IEA); 2010.
[81] (EIA) EIA. How much carbon dioxide is produced per kilowatthour when generating electricity with fossil fuels. 2016.
[82] Marquevich M, Sonnemann GW, Castells F, Montané D. Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock. Green Chem. 2002;4:414-23.
[83] Clarens AF, Resurreccion EP, White MA, Colosi LM. Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks. Environ Sci Technol. 2010;44:1813-9.
[84] Collet P, Lardon L, Hélias A, Bricout S, Lombaert-Valot I, Perrier B, et al. Biodiesel from microalgae – Life cycle assessment and recommendations for potential improvements. Renewable Energy. 2014;71:525-33.