| 研究生: |
呂官翰 Lu, Guan-Han |
|---|---|
| 論文名稱: |
將胺基逕轉為重氮化合物的新穎氮轉移試劑開發 A New N-Transfer Reagent for Directly Converting Amines into Diazo Compounds |
| 指導教授: |
周鶴軒
Chou, Ho-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 190 |
| 中文關鍵詞: | 重氮化合物 、三氮烯 、氮轉移試劑 、重氮鹽 、重氮化 |
| 外文關鍵詞: | Diazo compound, Triazene, Nitrogen transfer reagent, Diazonium salts, Diazotization |
| 相關次數: | 點閱:56 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
重氮化合物對於化學中佔有其一席之地,不論其衍生物在醫藥化學中的生物活性,或者在有機合成中作為離去基促進鍵與鍵的形成,重氮化合物自最初合成出來至今均一直處在高度討論的狀態,如今雖然有許多合成方式,但是直接以胺基進行重氮化的方式卻沒有再進步,且對官能基的容忍度相當低,如今我們設計一新穎的氮轉移試劑(nitrogen transfer reagent),預估可藉由此試劑的親電性下,與-胺基酮、-胺基酯及-胺基醯胺等各樣的伯胺(primary amine)形成三氮烯中間體(triazene intermediate),再進一步於弱鹼的環境下扣環降解成其所相對應的重氮化合物與內醯胺環化合物,此研究將提供更簡單且溫和的重氮化反應試劑,對不同類型胺基均表現相當穩定的產率,在本篇論文中我們也提供了許多未被報導且難以以一般合成方法合成出來的重氮化合物。
Diazo compounds play a very important role in chemistry field. Since the first diazo compound was synthesized, they have been intensively discussed in medicinal applications due to their biological activity and in organic syntheses as an irreversible leaving group participating in bond formations.
Although there were many synthetic methods affording diazo compounds, the straight method from amines with fragile functional groups has not been well developed yet. In here, the intermediate of triazenes constructed from various primary amines such as -amino ketones, -amino esters, and -amino amides with our novel N-transfer reagent could further decompose into corresponding diazo compounds through the intra-molecular lactamization under weak basic environment.
This thesis not only showed a convenient N-transfer reagent reliably generating diazo compounds from various amines but also disclosed several diazo compounds that have never been synthesized in the previous reports.
[1]. Griess, P., Eur. J. Org. Chem., 1858, 106 (1), 123-125.
[2]. Clark, L. V., Diazodinitrophenol, a Detonating Explosive. Ind. Eng. Chem., 1933, 25 (6), 663-669.
[3]. Di, M.; Rein, K. S., Aza analogs of kainoids by dipolar cycloaddition. Tetrahedron Lett., 2004, 45 (24), 4703-4705.
[4]. Buchner, E.; Curtius, T., Synthese von Ketonsäureäthern aus Aldehyden und Diazoessigäther. Eur. J. Inorg. Chem., 1885, 18 (2), 2371-2377.
[5]. BAMFORD, W. R.; STEVEN, T. S., The Decomposition of Toluene- p-sulphonylhydrazones by Alkali. J. Chem. Soc., 1952, (0), 4735-4740.
[6]. (a)Cardin, D. J.; Cetinkaya, B.; Lappert, M. F., Transition metal-carbene complexes. Chem. Rev., 1972, 72 (5), 545-574; (b)Takasu, N., Diazo-mediated Metal Carbenoid Chemistry. 2011; (c)Zhao, X.; Zhang, Y.; Wang, J., Recent developments in copper-catalyzed reactions of diazo compounds. Chem. Commun. (Camb.), 2012, 48 (82), 10162-73.
[7]. Curtius, T., Ueber die Einwirkung von salpetriger Säure auf salzsauren Glycocolläther. Eur. J. Inorg. Chem., 1883, 16 (2), 2230-2231.
[8]. (a)Lebel, H.; Marcoux, J. F.; Molinaro, C.; Charette, A. B., Stereoselective cyclopropanation reactions. Chem. Rev., 2003, 103 (4), 977-1050; (b)Davies, H. M.; Morton, D., Guiding principles for site selective and stereoselective intermolecular C-H functionalization by donor/acceptor rhodium carbenes. Chem. Soc. Rev., 2011, 40 (4), 1857-69; (c)Lewis, D. E., Disability, despotism, deoxygenation--from exile to Academy member: Nikolai Matveevich Kizhner. Angew. Chem. Int. Ed. Engl., 2013, 52 (45), 11704-12; (d)Methyl Phenyldiazoacetate.
[9]. Maas, G., New syntheses of diazo compounds. Angew. Chem. Int. Ed. Engl., 2009, 48 (44), 8186-95.
[10]. Anciaux, A. J.; Demonceau, A.; Noels, A. F.; Hubert, A. J.; Warin, R.; Teyssie, P., Transition-metal-catalyzed reactions of diazo compounds. 2. Addition to aromatic molecules: catalysis of Buchner's synthesis of cycloheptatrienes. J. Org. Chem., 1981, 46 (5), 873-876.
[11]. (a)Wolff, L., Mittheilung aus dem chemischen Laboratorium der. Eur. J. Org. Chem., 1902, 325 (2), 129-195; (b)GILL, G. B., The Wolff Rearrangement.
[12]. Spietschka, L. H. E., Leopold Horner nnd Ernst Spietsehka tfker Liehtreaktionen. Chem. Ber., 1955, 88 (7), 934-939.
[13]. (a)Corey, E. J.; Arnold, Z.; Hutton, J., Total synthesis of prostaglandins E2 and F2α () via a tricarbocyclic intermediate. Tetrahedron Lett., 1970, 11 (4), 307-310; (b)Becker, D.; Birnbaum, D., Intramolecular photoaddition of ketenes to conjugated cycloalkenones. J. Org. Chem., 1980, 45 (4), 570-578; (c)Thap Do, M.; Strausz, O. P., Cycloaddition of ethoxyketene to olefins. J. Am. Chem. Soc., 1970, 92 (6), 1766-1768.
[14]. (a)Wilds, A. L.; Berghe, J. V. D.; Winestock, C. H.; Trebra, R. L. V.; Woolsey, N. F., Abnormal Acids from the Arndt-Eistert Synthesis. J. Am. Chem. Soc., 1962, 84 (8), 1503-1504; (b)Zimmerman, H. E.; Little, R. D., Mechanistic and exploratory organic photochemistry. LXXXVII. Photochemical rearrangement of 4-aryl-substituted cyclopentenones. Low-temperature photochemistry and direct observation of reaction intermediates. J. Am. Chem. Soc., 1974, 96 (14), 4623-4630.
[15]. Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A., Modern Organic Synthesis with α-Diazocarbonyl Compounds. Chem. Rev., 2015, 115 (18), 9981-10080.
[16]. Matheis, C.; Krause, T.; Bragoni, V.; Goossen, L. J., Trifluoromethylthiolation and Trifluoromethylselenolation of alpha-Diazo Esters Catalyzed by Copper. Chemistry (Easton), 2016, 22 (35), 12270-3.
[17]. Holton, T. L.; Schechter, H., Advantageous Syntheses of Diazo Compounds by Oxidation of Hydrazones with Lead Tetraacetate in Basic Environments. J. Org. Chem., 1995, 60 (15), 4725-4729.
[18]. (a)Goddard-Borger, E. D.; Stick, R. V., An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. Org. Lett., 2007, 9 (19), 3797-800; (b)Zhang, J.; Chen, W.; Huang, D.; Zeng, X.; Wang, X.; Hu, Y., Tandem Synthesis of alpha-Diazoketones from 1,3-Diketones. J. Org. Chem., 2017, 82 (17), 9171-9174; (c)Regitz, D. D. M., New Methods of Preparative Organic Chemistry†. Transfer of Diazo Groups. Angew. Chem. Int. Ed., 1967, 6 (9), 733-749.
[19]. (a)Ruano, J. L.; Peromingo, M. T.; Alonso, M.; Fraile, A.; Martin, M. R.; Tito, A., 1,3-dipolar cycloadditions of diazoalkanes to activated sulfoxides: influence of Lewis acids. J. Org. Chem., 2005, 70 (22), 8942-7; (b)Harmata, M.; Lee, D. R.; Barnes, C. L., Stereospecific synthesis of dienones via a torquoselective retro-Nazarov reaction. Org. Lett., 2005, 7 (9), 1881-3.
[20]. (a)Myers, E. L.; Raines, R. T., A phosphine-mediated conversion of azides into diazo compounds. Angew. Chem. Int. Ed. Engl., 2009, 48 (13), 2359-63; (b)Chou, H. H.; Raines, R. T., Conversion of azides into diazo compounds in water. J. Am. Chem. Soc., 2013, 135 (40), 14936-9.
[21]. Roglans, A.; Pla-Quintana, A.; Moreno-Manas, M., Diazonium salts as substrates in palladium-catalyzed cross-coupling reactions. Chem. Rev., 2006, 106 (11), 4622-43.
[22]. Magers, D. H.; Salter, E. A.; Bartlett, R. J.; Salter, C.; Hess, B. A.; Schaad, L. J., Do stable isomers of N3H3 exist?, J. Am. Chem. Soc., 1988, 110 (11), 3435-3446.
[23]. Kimball, D. B.; Haley, M. M., Triazenes: A Versatile Tool in Organic Synthesis. Angew. Chem. Int. Ed., 2002, 41 (18), 3338-3351.
[24]. A.Connors, T.; M.Goddard, P.; Merai, K.; C.J.Ross, W.; E.V.Wilman, D., Tumour inhibitory triazenes: Structural requirements for an active metabolite. 1976, 25 (3), 241-246.
[25]. Gross, M. L.; Blank, D. H.; Welch, W. M., The Triazene Moiety as a Protecting Group for Aromatic Amines. J. Org. Chem, 1993, 58 (8), 2104-2109.
[26]. (a)Azizi, N.; Rajabi, F.; Saidi, M. R., A mild and highly efficient protocol for the one-pot synthesis of primary α-amino phosphonates under solvent-free conditions. Tetrahedron Lett., 2004, 45 (50), 9233-9236; (b)Azizi, N.; Saidi, M. R., Synthesis of tertiary α-amino phosphonate by one-pot three-component coupling mediated by LPDE. Tetrahedron, 2003, 59 (28), 5329-5332.
[27]. Baumgarten, R. J., Aliphatic Deaminations in Organic Synthesis. J. Chem. Educ., 1966, 43 (398-408).
[28]. Baumgarten, R. J., Preparation of ethyl diazoacetate via a triazene intermediate. J. Org. Chem., 1967, 32 (2), 484-485.
[29]. Schroen, M.; Bräse, S., Polymer-bound diazonium salts for the synthesis of diazoacetic esters. Tetrahedron, 2005, 61 (51), 12186-12192.
[30]. Saeki, T.; Son, E.-C.; Tamao, K., 2-Methoxy-4-nitrobenzenediazonium Salt as a Practical Diazonium-Transfer Agent for Primary Arylamines via Tautomerism of 1,3-Diaryltriazenes: Deaminative Iodination and Arylation of Arylamines without Direct Diazotization. Bull. Chem. Soc. Jpn., 2005, 78 (9), 1654-1658.
[31]. (a)M, G. M.; Sakakura, T. T., Benzenediazonium Tetrafluoroborate. Encyclopedia of Reagents for Organic Synthesis, 2001; (b)Koval’chuk, E. P.; Reshetnyak, O. V.; Kozlovs’ka, Z. Y.; Błażejowski, J.; Gladyshevs’kyj, R. Y.; Obushak, M. D., Mechanism of the benzenediazonium tetrafluoroborate thermolysis in the solid state. Thermochim. Acta, 2006, 444 (1), 1-5.
[32]. Woodward, R. B.; Doering, W. E., The Total Synthesis of Quinine. J. Am. Chem. Soc., 1945, 67 (5), 860-874.
[33]. (a)Schmidt, B.; Elizarov, N.; Berger, R.; Holter, F., Scope and limitations of the Heck-Matsuda-coupling of phenol diazonium salts and styrenes: a protecting-group economic synthesis of phenolic stilbenes. Org. Biomol. Chem., 2013, 11 (22), 3674-91; (b)B, E. D. C.; Jovanovi, L.; Sefkow, M., One-Pot, Pd-Catalyzed Synthesis of trans-Dihydrobenzofurans from o-Aminophenols. Org. Lett., 2010, 12 (9), 1976-1979.
[34]. Reay, A. J.; Hammarback, L. A.; Bray, J. T. W.; Sheridan, T.; Turnbull, D.; Whitwood, A. C.; Fairlamb, I. J. S., Mild and Regioselective Pd(OAc)2-Catalyzed C-H Arylation of Tryptophans by [ArN2]X, Promoted by Tosic Acid. ACS Catal, 2017, 7 (8), 5174-5179.
[35]. (a)Urgin, K.; Jida, M.; Ehrhardt, K.; Muller, T.; Lanzer, M.; Maes, L.; Elhabiri, M.; Davioud-Charvet, E., Pharmacomodulation of the Antimalarial Plasmodione: Synthesis of Biaryl- and N-Arylalkylamine Analogues, Antimalarial Activities and Physicochemical Properties. Molecules, 2017, 22 (1); (b)Clift, M. D.; Silverman, R. B., Synthesis and evaluation of novel aromatic substrates and competitive inhibitors of GABA aminotransferase. Bioorg. Med. Chem. Lett., 2008, 18 (10), 3122-5; (c)Page, M. I.; Proctor, P., Mechanism of ,&Lactam Ring Opening in Cephalosporins. J. Am. Chem. Soc., 1984, 106 (13), 3820-3825.
[36]. (a)Li, J.; Sha, Y., A convenient synthesis of amino acid methyl esters. Molecules, 2008, 13 (5), 1111-9; (b)Mishra, J. K.; Panda, G., Diversity-Oriented Synthetic Approach to Naturally Abundant S-Amino Acid Based Benzannulated Enantiomerically Pure Medium Ring Heterocyclic Scaffolds Employing Inter- and Intramolecular Mitsunobu Reactions. J. Comb. Chem., 2007, 9 (2), 321-338.
[37]. Swamy, U. K.; Mohan, H. R.; Prasad, U. V.; Suresh, T.; Kumar, T. L., One-Pot Synthesis of Novel 3,5-Disubstituted-1,2,4-oxadiazoles from Indazole Carboxylic Acid Esters and Amidoximes. Asian J. Chem., 2014, 26 (7), 1921-1930.
[38]. (a)Alt, I. T.; Guttroff, C.; Plietker, B., Iron-Catalyzed Intramolecular Aminations of C(sp(3) )-H Bonds in Alkylaryl Azides. Angew. Chem. Int. Ed. Engl., 2017, 56 (35), 10582-10586; (b)Nguyen, Q.; Nguyen, T.; Driver, T. G., Iron(II) bromide-catalyzed intramolecular C-H bond amination [1,2]-shift tandem reactions of aryl azides. J. Am. Chem. Soc., 2013, 135 (2), 620-3; (c)Nguyen, Q.; Sun, K.; Driver, T. G., Rh2(II)-catalyzed intramolecular aliphatic C-H bond amination reactions using aryl azides as the N-atom source. J. Am. Chem. Soc., 2012, 134 (17), 7262-5.
[39]. Beesley, R. M.; Ingold, C. K.; Thorpe, J. F., The formation and stability of spiro-compounds. Part I. spiro-Compounds from cyclohexane., J. Chem. Soc., 1915, 107, 1080-1106.
[40]. Levine, M. N.; Raines, R. T., Trimethyl lock: A trigger for molecular release in chemistry, biology, and pharmacology. Chem. Sci., 2012, 3 (8), 2412-2420.
[41]. (a)Lipunova, G. N.; Nosova, E. V.; Charushin, V. N.; Chupakhin, O. N., Fluorine-containing indazoles: Synthesis and biological activity. J. Fluorine Chem., 2016, 192, 1-21; (b)Gaikwad, D. D.; Chapolikar, A. D.; Devkate, C. G.; Warad, K. D.; Tayade, A. P.; Pawar, R. P.; Domb, A. J., Synthesis of indazole motifs and their medicinal importance: an overview. Eur. J. Med. Chem., 2015, 90, 707-31.
[42]. (a)Igoe, N.; Bayle, E. D.; Tallant, C.; Fedorov, O.; Meier, J. C.; Savitsky, P.; Rogers, C.; Morias, Y.; Scholze, S.; Boyd, H.; Cunoosamy, D.; Andrews, D. M.; Cheasty, A.; Brennan, P. E.; Muller, S.; Knapp, S.; Fish, P. V., Design of a Chemical Probe for the Bromodomain and Plant Homeodomain Finger-Containing (BRPF) Family of Proteins. J. Med. Chem., 2017, 60 (16), 6998-7011; (b)Hu, Q.; Yin, L.; Hartmann, R. W., Selective dual inhibitors of CYP19 and CYP11B2: targeting cardiovascular diseases hiding in the shadow of breast cancer. J. Med. Chem., 2012, 55 (16), 7080-9.
[43]. Baldwin, J. E.; Thomas, R. C.; Kruse, L. I.; Silberman, L., Rules for ring closure: ring formation by conjugate addition of oxygen nucleophiles. J. Org. Chem., 1977, 42 (24), 3846-3852.
[44]. Carpita, A.; Ribecai, A.; Stabile, P., Microwave-assisted synthesis of indole- and azaindole-derivatives in water via cycloisomerization of 2-alkynylanilines and alkynylpyridinamines promoted by amines or catalytic amounts of neutral or basic salts. Tetrahedron, 2010, 66 (35), 7169-7178.
[45]. Wang, C.; Chen, H.; Wang, Z.; Chen, J.; Huang, Y., Rhodium(III)-catalyzed C-H activation of arenes using a versatile and removable triazene directing group. Angew. Chem. Int. Ed. Engl., 2012, 51 (29), 7242-5.
[46]. Krapcho, A. P.; Jr, E. G. E. J.; Lovey, A. J.; Short, F. W., Decarbalkoxylations of geminal diesters and β-keto esters in wet dimethyl sulfoxide. Effect of added sodium chloride on the decarbalkoxylation rates of mono- and di-substituted Malonate esters. Tetrahedron Lett., 1974, 15 (13), 1091-1094.
[47]. Kornblum, N.; Kelley, A. E.; Cooper, G. D., The Chemistry of Diazo Compounds. III. The Reduction of Diazonium Salts by Phosphorous Acid1. J. Am. Chem. Soc., 1952, 74 (12), 3074-3076.
[48]. Masoud, N. K.; Sakla, A. B.; Sawiris, Z.; Yassa, N. A., Coupling of Diazonium Salts with Acetone. J. Chem. Soc., Perkin Trans. , 1975, 2 (12), 1312-1315.
[49]. Pramanik, M. M.; Rastogi, N., Visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO. Chem. Commun. (Camb.), 2016, 52 (55), 8557-60.
[50]. Challis, B. C.; Latif, F., Synthesis and Characterisation of some New Diazopeptides. J. Chem. Soc., Perkin Trans., 1990, 1, 1005-1009.
[51]. (a)Horaguchi, T.; Hosokawa, N., Photocyclization Reactions. Part 8 [1]. Synthesis of 2-Quinolone, Quinoline and Coumarin Derivatives Using Trans-Cis Isomerization by Photoreaction. J. Heterocyclic Chem., 2002, 39, 61-67; (b)Kim, J. H.; Jeong, H. R.; Jung, D. W.; Yoon, H. B.; Kim, S. Y.; Kim, H. J.; Lee, K. T.; Gadotti, V. M.; Huang, J.; Zhang, F. X.; Zamponi, G. W.; Lee, J. Y., Synthesis and biological evaluation of fluoro-substituted 3,4-dihydroquinazoline derivatives for cytotoxic and analgesic effects. Bioorg. Med. Chem., 2017, 25 (17), 4656-4664.
[52]. Knoevenagel, E., Condensation von Malonsäure mit aromatischen Aldehyden durch Ammoniak und Amine. Eur. J. Inorg. Chem., 1898, 31 (3), 2596-2619.
[53]. Chandrasekhar, T.; Kumar, L. V.; Reddy, A. B.; Naik, P. J.; Swamy, G. N., Synthesis and biological evaluation of some new Aryl acid N'-(1Hindazole-3-carbonyl)-hydrazide derivatives J. Chem. Pharm. Res., 2012, 4 (5), 2795-2802.
[54]. Santi, M.; Müller, S. T. R.; Folgueiras-Amador, A. A.; Uttry, A.; Hellier, P.; Wirth, T., Enantioselective Synthesis of trans-2,3-Dihydro-1H -indoles Through C-H Insertion of α-Diazocarbonyl Compounds. Eur. J. Org. Chem., 2017, 2017 (14), 1889-1893.
[55]. Jin, T.; Yang, F.; Yamamoto, Y., Facile and efficient synthesis of indazole derivatives by 1,3-cycloaddition of arynes with diazo compounds and azomethine imides. Collect. Czech. Chem. Commun., 2009, 74 (6), 957-972.
[56]. Koshizawa, T.; Morimoto, T.; Watanabe, G.; Watanabe, T.; Yamasaki, N.; Sawada, Y.; Fukuda, T.; Okuda, A.; Shibuya, K.; Ohgiya, T., Optimization of a novel series of potent and orally bioavailable GPR119 agonists. Bioorg. Med. Chem. Lett., 2017, 27 (15), 3249-3253.
[57]. Wang, H.; Dong, B.; Wang, Y.; Li, J.; Shi, Y., A palladium-catalyzed regioselective hydroesterification of alkenylphenols to lactones with phenyl formate as CO source. Org. Lett., 2014, 16 (1), 186-9.
[58]. Mofford, D. M.; Reddy, G. R.; Miller, S. C., Aminoluciferins extend firefly luciferase bioluminescence into the near-infrared and can be preferred substrates over D-luciferin. J. Am. Chem. Soc., 2014, 136 (38), 13277-82.
[59]. Saito, Y.; Yoshimura, Y.; Takahata, H., Chemoselective O-tert-butoxycarbonylation of phenols using 6,7-dimethoxyisoquinoline as a novel organocatalyst. Tetrahedron Lett., 2010, 51 (52), 6915-6917.
[60]. Zhang, Y.; Yao, Y.; He, L.; Liu, Y.; Shi, L., Rhodium(II)/Chiral Phosphoric Acid-Cocatalyzed Enantioselective O-H Bond Insertion of α-Diazo Esters. Adv. Synth. Catal., 2017, 359 (16), 2754-2761.