簡易檢索 / 詳目顯示

研究生: 曾偉誠
Tseng, Wei-Cheng
論文名稱: 離心式風扇蝸殼流道最佳化之設計
The Optimum Design of Volute Housing for a Centrifugal Fan
指導教授: 黃正弘
Huang, Cheng-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 143
中文關鍵詞: 風機離心式風扇拉凡格式法最佳化設計
外文關鍵詞: Blower, Centrifugal fan, Levenberg-Marquardt method, Optimal design
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用拉凡格式法(Levenberg-Marquardt Method)結合商用套裝軟體CFD-ACE+,進行離心式風扇蝸殼流道幾何之反算設計。將設計半徑設為設計參數,並以最大風量為目標函數,經反覆疊代計算後求得最佳化離心式風扇蝸殼流道幾何外型。並由拉凡格式法搭配商用套裝軟體CFD-ACE+確實可以得到最大風量時之風扇蝸殼流道外型。由結果顯示不同之設計半徑會有不一樣之流場情況,在蝸殼流道外型上亦會有不一樣的結果。經CFD-VIEW將流場可視化後,可從速度場及壓力場觀察到最佳化風扇較初始風扇於蝸殼流道內壓力集中之現象有大幅改善,進而使速度分布均勻,致空氣於蝸殼流道內部流動更加順暢。其中也改善出口流道之回流現象與舌部出口處的渦旋現象,並使扇葉間之壓差減小。最後並進行實驗驗證,以證明吾人設計之風扇在實際上亦有其效果,由實驗結果顯示在風量上提升了6.46%,且因流場流動穩定與壓力集中效應減小,故在噪音上減小了5.32%,因此達到本文之離心式風扇蝸殼流道最佳化設計的目標。

    This thesis utilize the technique of the Levenberg-Marquardt Method (LMM) together with the commercial package CFD-ACE+ for an optimal design of volute housing of a centrifugal fan. Design radius is set to the design parameters and the maximum airflow rate is set to the objective function. Then, we calculated by iteratively to obtain the optimum design of volute housing for a centrifugal fan. According to the above method, we can get the optimum geometry of a centrifugal fan with maximum airflow rate.
    The results show that the different design radius will result in different flow field situations with the changes in the appearance of the volute housing. By the flow patterns, we can see the phenomenon of pressure concentration improve significantly in volute housing, and the velocity distribution is more uniform in optimized fan. Optimized fan not only improves the phenomenon of reflow in outlet channel but also improves the phenomenon of vortex at tongue, and thus make the pressure difference smaller between blades.
    Experimental results show that the airflow rate increased to 6.46%. Also, because of the flow is more stable and reduced pressure concentration we have 5.32% noise reduction in optimized fan. Therefore, the optimum design of volute housing for a centrifugal fan achieve the goal of this thesis.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號表 XII 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1風扇設計與噪音 2 1-2-2反算設計 6 1-3 研究目的與方法 7 第二章 風扇模型設計 10 2-1 離心式風扇能量方程 11 2-2 風扇模型設計 14 2-2-1 葉輪設計 15 2-2-2 蝸殼流道設計 21 第三章 數值方法與流場分析 32 3-1 流場基本假設 33 3-2統御方程式 35 3-3紊流模式 38 3-4網格配置 39 3-5直接解問題 42 3-6初始模型流場分析 46 第四章 蝸殼流道最佳化設計 59 4-1 拉凡格式法於蝸殼流道最佳化設計 59 4-2 拉凡格式法之極小化過程 60 4-3 反算計算流程 63 4-4 結果與討論 64 4-4-1 最佳化模型流場分析 67 4-4-2 風扇性能與效率比較 70 第五章 實驗驗證 102 5-1風扇性能量測設備與步驟 103 5-2噪音量測設備與步驟 106 5-3實驗結果與討論 108 5-3-1風扇性能量測結果與討論 108 5-3-2噪音量測結果與討論 110 第六章 實驗與模擬結果比較 127 第七章 結論 138 參考文獻 141

    [1]Eck, B., Fans : Design and operation of centrifugal, axial-flow and Cross-Flow Fans, Pergamon Press, New York, 1973.
    [2]Bleier, Frank P., Fan Handbook, Selection, Application, and Design, McGraw Hill, 1997.
    [3]Raj, D. and Swim, W. B., Measurements of the mean flow velocity and velocity fluctuations at the exit of a F-C centrifugal fan rotor, Journal of Engineering for Power, Vol. 103, pp. 393-399, 1981.
    [4]周志成, 新型離心式風扇數值與實驗整合研究, 國立台灣科技大學碩士論文, 2006.
    [5]Lin, S.C. and Chou, C.A., Blockage effect of axial-flow fans applied on heat sink assembly, Journal of Applied Thermal Engineering, Vol.24, pp. 2375-2389, 2004.
    [6]周建安, 小型冷卻風扇在不同流阻下之性能研究, 國立台灣科技大學碩士論文, 2004.
    [7]Lin, S.C. and Huang, C.L., An integrated experimental and numerical study of forward–curved centrifugal fan, Journal of Experimental Thermal and Fluid Science, Vol.26, pp. 421-434 , 2002.
    [8]Younsi, M., Bakir, F., Kouidri, S. and Rey, R., Numerical and experimental study of unsteady flow in a centrifugal fan, Proc IMech E Part A, Journal of Power and Energy, Vol. 221, pp. 1025-1036, 2007.
    [9]Majidi, K., Numerical study of unsteady flow in a centrifugal pump, ASME, Journal of Turbomachinery, Vol.5, pp.805-814, 2004.
    [10]Leidel, W., Einfluss von Zungenabstand und Zungenradius auf Kennlinie und Gera ̈usch eines Radialventilators, DLR-FB, pp.16-69, 1967.
    [11]陳秉勣, 離心風扇舌尖外形對性能與噪音的影響, 國立成功大學碩士論文, 2004.
    [12]Morinushi, K., The influence of geometric garameters on F-C centrifugal fan noise, Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 109, pp. 227-234, 1987.
    [13]Koo, H. M., An experimental study of the noise and the performance of cross-flow fans in room airconditioning systems, Journal of Noise Control Engineering, Vol.48, No.2, pp. 41-47, 2002.
    [14]Lin, S. C., A novel F-C centrifugal fan design for improved performance, Department of Mechanical Engineering Technical Report, Tennessee Technological University, 1982.
    [15]Kondo, L. and Aoki, Y., Noise reduction in turbo fans for air conditioners, Technical Review-Mitsubishi Heavy Industries, Vol.26, No.3, pp.173-179, 1989.
    [16]Son, P. N., Kim, J. W., Byun, S. M. and Ahn, E. Y., Effects of inlet radius and bell mouth radius on flow rate and sound quality of centrifugal blower, Journal of Mechanical Science and Technology, Vol.26, No.5, pp.1531-1538, 2012.
    [17]Son, P. N., Kim, J. W. and Ahn, E.Y., Effect of bell mouth geometries on the flow rate of centrifugal blowers, Journal of Mechanical Science and Technology, Vol.25, No.9, pp.2267-2276, 2011.
    [18]Kodama, Y. and Fukano, T., Flow characteristics of the sound pressure level and its prediction for a low pressure axial flow fan, Transactions of The Japan Society of Mechanical Engineers, Vol.53, No.492, pp.2514-2520, 1987.
    [19]Li, C., Wang, S. L. and Jia, Y., The performance of a centrifugal fan with enlarged impeller, Journal of Energy Conversion and Management, Vol.52, pp.2902-2910, 2011.
    [20]Jang, C.M., and Choi, K. R., Optimal design of splitters attached to turbo blower impeller by RSM, Journal of Thermal Science, Vol.21, No.3, pp.215-222, 2012.
    [21]Obayashi, S., and Takanashi, S., Genetic optimization of target pressure distributions for inverse design method, AIAA Journal, Vol.34, No.5, pp.881-886, 1996.
    [22]Zhang, B., Wang, T., Gu, C. G. and Shu, X. W., Blade optimization design and performance investigations of an ultra-low specific speed centrifugal blower, Science China Technological Sciences, Vol.54, No.1, pp.203-210, 2011.
    [23]Huang, C. H., and Gau, C. W., An optimal design for axial-flow fan blade: theoretical and experimental studies, Journal of Mechanical Science and Technology, Vol.26, No.2, pp.427-436, 2012.
    [24]Huang, C. H. and Chen, C. A., A three-dimensional inverse geometry problem in estimating the space and time-dependent shape of an irregular internal cavity, International Journal of Heat and Mass Transfer, Vol.52, pp.2079-2091, 2009.
    [25]Huang, C. H., and Chen, C. A., The shape identification problem in estimating the geometry of a three-dimensional irregular internal cavity, CMES-Computer Modeling in Engineering & Sciences, Vol.36, pp.1-21, 2008.
    [26]Huang, C. H., A transient three-dimensional inverse geometry problem in estimating the space and time-dependent irregular boundary shapes, International Journal of Heat and Mass Transfer, Vol.51, pp.5238-5246, 2008.
    [27]洪敏翔, 離心式風扇最佳幾何形狀之設計, 國立成功大學碩士論文, 2011.
    [28]CFD-ACE+ user's manual, ESI-CFD Inc, 2006.
    [29]Koopmann, G. H., and Neise, W., The use of resonators to slience centrifugal blowers, Journal of Sound and Vibration, Vol. 82, No. 1, pp. 17-27, 1982.
    [30]Launder, B. E. and Spalding D. B., The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, Vol.3, pp.269-289, 1974.
    [31]Marquardt, D. W., An algorithm for least-squares estimation of nonlinear parameters, Journal of the Society for Industrial and Applied Mathematics, Vol.11, No.2, pp.431-441, 1963.
    [32]ANSI/AMCA Standard 210-85, Laboratory method of testing fans for aerodynamic performance rating, Air Movement and Control Association, Inc., 1986.
    [33]CNS 8753, Determination of sound power level of noise for fan, blower and compressors, Chinese National Standard, 1982.

    無法下載圖示 校內:2013-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE