| 研究生: |
李健榆 Li, Chien-Yu |
|---|---|
| 論文名稱: |
運用AAO模板製作金奈米柱氣體感測器與應用於物聯網前端裝置之研究 The study of Au nanorod gas sensor and the front end devices apply on Internet of Thing |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 陽極氧化鋁模板 、金奈米柱 、硫化氣體感測器 、氧化鋅摻鋁/矽蕭基二極體 、表面聲波濾波器模擬 、雙工器 、物聯網 |
| 外文關鍵詞: | Anodic aluminum oxide template, Au nanorod, Sulfide gas sensor, AZO/Si schottky diode, SAW filter simulation, Duplexer, IoT |
| 相關次數: | 點閱:126 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著現今科技的快速發展與人們對於生活環境的要求,物聯網此一科技概念逐漸成為重視,物聯網依照其概念可分成三個層級:應用層、網路層與感測層,透過感測層在感測端對大量的感測元件針對不同的場景進行感知與監控蒐集資訊,並透過網路層進行傳輸管理,進而在應用層之應用端執行智慧遙控如遠端醫療、交通管制…等多項應用。因此物聯網中的感測器占有極重要的角色,堪稱為物聯網中的核心技術。所謂的感測器在細分結構的情況下又可分為:電力供應元件、感測元件與無線射頻元件等。本論文針對氣體感測的架構分別進行相關技術的研究。
第一部份,本論文針對氣體感測元件提出利用陽極氧化鋁模板製備金奈米柱作為硫化氣體的感測。陽極氧化鋁模板具備高密度、高比表面積(Specific surface area)與高規則性孔洞。利用此模板特性可輔以電化學沉積技術製備高比表面積之金奈米柱,具有相較於金薄膜高靈敏度之氣體感測。我們亦透過過氧化氫溶液對陽極氧化鋁模板進行表面改質並於金電鍍液中加入二甲基亞砜(DMSO) 進行濃稠度改質以及調變電鍍液之酸鹼值。透過此一優化製程所製備出的金奈米柱具有(111)優選取向之類單晶結構。而利用此金奈米柱進行甲基硫醇氣體感測易得到高靈敏性與高選擇性的感測結果。
第二部份,我們利用AZO/Si異質皆面特性製作高崩潰電壓與低漏電流之蕭特基二極體。我們利用氫電漿於矽基板上進行轟擊以減少矽基板上之懸浮鍵,並透過調變AZO之製程參數得到高導電性之AZO薄膜。透過氫電漿的處裡可以有效減少矽與AZO薄膜間的缺陷,從而減少介面上之載子缺陷複合中心。接著我們利用保護環的結構與快速熱退火來增加AZO/Si 二極體之崩潰電壓並減少其漏電流路徑。我們成功製作出高崩潰電壓(>200V)與低漏電流密度(<75μA/mm2)之蕭特基二極體。此一低漏電流密度之二極體為適合運用於低功率消耗的電力元件。
第三部份,本論文針對RF 射頻元件相關技術進行研究,我們運用壓電材料之表面聲波特性,提出一快速模擬表面聲波諧振器、階梯式表面聲波濾波器和雙工器的模擬方法。此雙工器之模擬操作頻段Tx為824-849(MH)而Rx為869-894(MHz),透過表面聲波濾波器的模擬,我們得到階梯式表面聲波濾波器具有比雙模態濾波器低的插入損耗、高的功率耐受度與寬的頻寬。因此,透過此以階梯式濾波器的模擬,調變其串聯諧振器與並聯諧振器之共振頻率與頻寬,再經過多階的串聯後可以得到具有以下優異特性之雙工器模擬:1.通帯中低差入損耗 2.拒帶中快速衰減之高插入損耗 3.傳輸與接收端高隔離度。
With the rapidly develop of technology and the requirement to the environment, the conception of Internet of Thing (IoT) has been emphasized by industry and academic. The conception of IoT can be divided in three level: application layer, network layer, and sensor layer. The multi sensors in the sensor layer collect and monitor the information under different environment. The collected information are transmit through the network layer to the application layer for the request such as remote medical care, traffic control…etc. Therefore, the sensor is the core technic of the IoT network. The basic sensor structure are composed of power supply unit, sensor unit, and wireless radio frequency unit. In the dissertation, we focused on the research and discussion of technic relative to the three part.
In the sensor unit section, we mentioned the Au nanorod sulfide gas sensor fabricated by the Anodic Aluminum Oxide template (AAO). AAO template exhibits the outstanding characteristic of high surface density, high specific surface area, and high regularity pore for the nanomaterial fabrication. The Au nanorod synthesized with the aid of AAO template by electro deposition process has a higher sensitivity than the thin film structure for the gas sensing due to the high regularity and high specific surface. We also optimized the electro deposition process by the AAO template surface modification under H2O2 solution. The electrolyte was also modulated with the DMSO additive and pH value. The optimized electro process improve the crystal characteristic of the Au nanorod which exhibit the single crystal structure of (111) orientation peak. The single phase Au nanorod has a high sensitivity and selectivity to the sulfide gas.
In the second part, we discuss the Schottky barrier diode in the boost circuit. We develop the AZO/Si schottky barrier diode with high breakdown voltage and low leakage current property. We enhance the electric conductivity of the AZO thin film by modulating the process parameter. We also applied the Hydrogen plasma bombard to reduce the dangling bonds on the surface of Si substrate. In order to reduce the leakage current pathway and increase the reverse breakdown voltage, we adding the guard ring structure at the side of the AZO/Si diode. The structure of schottky diode has an excellent electric properties of >200V breakdown voltage and <75μA/mm2 which can be applied on the low power consumption power unit.
In the third part, we discuss the radio frequency unit of surface acoustic wave duplexer. We propose the rapid simulation of the surface acoustic wave resonator, ladder type filter, and duplexer with the piezoelectric material LiTaO3. The ladder type filter was composed with the serial and parallel arrangement of the SAW resonator. With the simulation of SAW filter, the duplexer composed with ladder type structure filter possesses a lower insertion loss, wider passband bandwidth, and higher power durability than the duplexer composed with double mode saw (DMS). Through the ladder type SAW filter simulation, the passband bandwidth and the insertion loss of the duplexer can be obtain by the modulation of the serial and parallel resonators’ resonate frequency. We can obtain a duplexer (Tx 824-849 MHz and Rx 869-894 MHz) with the low insertion loss at pass band, steep cutoff at rejection band, and high isolation between Tx-Rx.
[1]. Chen, S., Xu, H., Liu, D., Hu, B., & Wang, H. (2014). A vision of IoT: Applications, challenges, and opportunities with china perspective. IEEE Internet of Things journal, 1(4), 349-359.
[2]. Liu, X., Cheng, S., Liu, H., Hu, S., Zhang, D., & Ning, H. (2012). A survey on gas sensing technology. Sensors, 12(7), 9635-9665.
[3]. Awang, Z. (2014). Gas sensors: A review. Sens. Transducers, 168, 61-75.
[4]. Mirzaei, A., Leonardi, S. G., & Neri, G. (2016). Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceramics International, 42(14), 15119-15141.
[5]. Fine, G. F., Cavanagh, L. M., Afonja, A., & Binions, R. (2010). Metal oxide semi-conductor gas sensors in environmental monitoring. sensors, 10(6), 5469-5502.
[6]. Rhoderick, E. H. (1982). Metal-semiconductor contacts. IEEE Proceedings I-Solid-State and Electron Devices, 129(1), 1.
[7]. Nicollian, E. H., Brews, J. R., & Nicollian, E. H. (1982). MOS (metal oxide semiconductor) physics and technology (Vol. 1987). New York et al.: Wiley.
[8]. Tersoff, J. (1984). Schottky barrier heights and the continuum of gap states. Physical Review Letters, 52(6), 465.
[9]. Crowell, C. R. (1965). The Richardson constant for thermionic emission in Schottky barrier diodes. Solid-State Electronics, 8(4), 395-399.
[10]. Campbell, C. (1998). Surface Acoustic Wave Devices for Mobil and Wireless Communications. Academic Press, Inc..
[11]. Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012, December). Future internet: the internet of things architecture, possible applications and key challenges. In Frontiers of Information Technology (FIT), 2012 10th International Conference on (pp. 257-260). IEEE.
[12]. Hulanicki, A., Glab, S., & Ingman, F. O. L. K. E. (1991). Chemical sensors: definitions and classification. Pure and Applied Chemistry, 63(9), 1247-1250.
[13]. Bochenkov, V. E., & Sergeev, G. B. (2010). Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. Metal oxide nanostructures and their applications, 3, 31-52.
[14]. Sharma, B. L. (Ed.). (2013). Metal-semiconductor Schottky barrier junctions and their applications. Springer Science & Business Media.
[15]. Moll, J. L. (1964). Physics of semiconductors.
[16]. Buttay, C., Raynaud, C., Morel, H., Civrac, G., Locatelli, M. L., & Morel, F. (2012). Thermal stability of silicon carbide power diodes. IEEE Transactions on electron devices, 59(3), 761-769.
[17]. Whatmore, R. W., Shorrocks, N. M., O'hara, C., Ainger, F. W., & Young, I. M. (1981). Lithium tetraborate: a new temperature-compensated SAW substrate material. Electronics Letters, 17(1), 11-12.
[18]. Gualtieri, J. G., Kosinski, J. A., & Ballato, A. (1994). Piezoelectric materials for acoustic wave applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 41(1), 53-59.
[19]. Damjanovic, D. (1998). Materials for high temperature piezoelectric transducers. Current Opinion in Solid State and Materials Science, 3(5), 469-473.
[20]. Pletcher, D., & Walsh, F. C. (2012). Industrial electrochemistry. Springer Science & Business Media.
[21]. Buck, R. P., Rondinini, S., Covington, A. K., Baucke, F. G. K., Brett, C. M., Camoes, M. F. & Spitzer, P. (2002). Measurement of pH. Definition, standards, and procedures (IUPAC Recommendations 2002). Pure and applied chemistry, 74(11), 2169-2200.
[22]. 莊達人, & 電子工程. (2002). VLSI 製造技術. 高立出版.
[23]. Jusman, Y., Ng, S. C., Osman, A., & Azuan, N. (2014). Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX. The Scientific World Journal, 2014.
[24]. Cullity, B. D. (1978). Elements of X-ray Diffraction.
[25]. Warren, B. E. (1990). X-ray Diffraction. Courier Corporation.
[26]. Jani, A. M. M., Losic, D., & Voelcker, N. H. (2013). Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications. Progress in Materials Science, 58(5), 636-704.
[27]. Lee, S. B., Mitchell, D. T., Trofin, L., Nevanen, T. K., Söderlund, H., & Martin, C. R. (2002). Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science, 296(5576), 2198-2200.
[28]. Che, G., Lakshmi, B. B., Martin, C. R., Fisher, E. R., & Ruoff, R. S. (1998). Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chemistry of Materials, 10(1), 260-267.
[29]. Hurst, S. J., Payne, E. K., Qin, L., & Mirkin, C. A. (2006). Multisegmented one‐dimensional nanorods prepared by hard‐template synthetic methods. Angewandte Chemie International Edition, 45(17), 2672-2692.
[30]. Lee, S. C., Kim, S. Y., Hwang, B. W., Jung, S. Y., Ragupathy, D., Son, I. S., ... & Kim, J. C. (2013). Improvement of H2S sensing properties of SnO2-based thick film gas sensors promoted with MoO3 and NiO. Sensors, 13(3), 3889-3901.
[31]. Liu, C. H., Zhang, L., & He, Y. J. (1997). Properties and mechanism study of Ag doped SnO2 thin films as H2S sensors. Thin Solid Films, 304(1-2), 13-15.
[32]. Li, X. L., Lou, T. J., Sun, X. M., & Li, Y. D. (2004). Highly sensitive WO3 hollow-sphere gas sensors. Inorganic Chemistry, 43(17), 5442-5449.
[33]. Lin, H. M., Hsu, C. M., Yang, H. Y., Lee, P. Y., & Yang, C. C. (1994). Nanocrystalline WO3-based H2S sensors. Sensors and Actuators B: Chemical, 22(1), 63-68.
[34]. Gupta, S. K., Joshi, A., & Kaur, M. (2010). Development of gas sensors using ZnO nanostructures. Journal of Chemical Sciences, 122(1), 5
[35]. Kim, J., & Yong, K. (2011). Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing. The Journal of Physical Chemistry C, 115(15), 7218-7224.
[36]. Wang, J. X., Sun, X. W., Yang, Y., Huang, H., Lee, Y. C., Tan, O. K., & Vayssieres, L. (2006). Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology, 17(19), 4995.
[37]. Vaishampayan, M. V., Deshmukh, R. G., Walke, P., & Mulla, I. S. (2008). Fe-doped SnO2 nanomaterial: A low temperature hydrogen sulfide gas sensor. Materials Chemistry and Physics, 109(2-3), 230-234.
[38]. Penza, M., Martucci, C., & Cassano, G. (1998). NOx gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers. Sensors and Actuators B: Chemical, 50(1), 52-59.
[39]. Dong, K. Y., Choi, J. K., Hwang, I. S., Lee, J. W., Kang, B. H., Ham, D. J., ... & Ju, B. K. (2011). Enhanced H2S sensing characteristics of Pt doped SnO2 nanofibers sensors with micro heater. Sensors and Actuators B: Chemical, 157(1), 154-161.
[40]. Niranjan, R. S., Chaudhary, V. A., Mulla, I. S., & Vijayamohanan, K. (2002). A novel hydrogen sulfide room temperature sensor based on copper nanocluster functionalized tin oxide thin films. Sensors and Actuators B: Chemical, 85(1-2), 26-32.
[41]. Della Gaspera, E., Guglielmi, M., Agnoli, S., Granozzi, G., Post, M. L., Bello, V., ... & Martucci, A. (2010). Au Nanoparticles in Nanocrystalline TiO2− NiO Films for SPR-Based, Selective H2S Gas Sensing. Chemistry of Materials, 22(11), 3407-3417.
[42]. Zhang, H., Zhang, L., Hu, J., Cai, P., & Lv, Y. (2010). A cataluminescence gas sensor based on nanosized V2O5 for tert-butyl mercaptan. Talanta, 82(2), 733-738.
[43]. Minamide, T., Mitsubayashi, K., & Saito, H. (2005). Bioelectronic sniffer with monoamine oxidase for methyl mercaptan vapor. Sensors and Actuators B: Chemical, 108(1-2), 639-645.
[44]. Mitsubayashi, K., Minamide, T., Otsuka, K., Kudo, H., & Saito, H. (2006). Optical bio-sniffer for methyl mercaptan in halitosis. Analytica chimica acta, 573, 75-80.
[45]. Ito, J., Nakamoto, T., & Uematsu, H. (2004). Discrimination of halitosis substance using QCM sensor array and a preconcentrator. Sensors and Actuators B: Chemical, 99(2-3), 431-436.
[46]. Li, Z. H., Sun, S. G., & Marty, J. L. (2014). Design and characterization of methyl mercaptan biosensor using alcohol oxidase. Sensors and Actuators B: Chemical, 192, 680-684.
[47]. Young, S. J., & Lin, Z. D. (2018). Ethanol gas sensors based on multi-wall carbon nanotubes on oxidized Si substrate. Microsystem Technologies, 24(1), 55-58.
[48]. Young, S. J., Yang, C. C., & Lai, L. T. (2017). Growth of Al-, Ga-, and in-doped ZnO nanostructures via a low-temperature process and their application to field emission devices and ultraviolet photosensors. Journal of The Electrochemical Society, 164(5), B3013-B3028.
[49]. Young, S. J., & Lin, Z. D. (2017). Acetone gas sensors composed of carbon nanotubes with adsorbed Au nanoparticles on plastic substrate. Microsystem Technologies, 1-4.
[50]. Young, S. J., & Lin, Z. D. (2017). Ethanol gas sensors composed of carbon nanotubes with au nanoparticles adsorbed onto a flexible PI substrate. ECS Journal of Solid State Science and Technology, 6(10), M130-M132.
[51]. Suh, J. S., & Lee, J. S. (1999). Highly ordered two-dimensional carbon nanotube arrays. Applied physics letters, 75(14), 2047-2049.
[52]. Wan, Q., Li, Q. H., Chen, Y. J., Wang, T. H., He, X. L., Li, J. P., & Lin, C. L. (2004). Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 84(18), 3654-3656.
[53]. An, K. H., Jeong, S. Y., Hwang, H. R., & Lee, Y. H. (2004). Enhanced sensitivity of a gas sensor incorporating single‐walled carbon nanotube–polypyrrole nanocomposites. Advanced Materials, 16(12), 1005-1009.
[54]. Wang, J. X., Sun, X. W., Yang, Y., Huang, H., Lee, Y. C., Tan, O. K., & Vayssieres, L. (2006). Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology, 17(19), 4995.
[55]. Liou, J. C., Yang, C. F., & Gong, C. S. (2016). Design and fabrication of identification inkjet print head chip fuse sensors. Sensors and Materials, 28(5), 493-501.
[56]. Liu, J., Cai, H., Chen, C., Yang, G., & Yang, C. F. (2016). Generation of localized surface plasmon resonance using hybrid Au–Ag nanoparticle arrays as a sensor of polychlorinated biphenyls detection. Sensors, 16(8), 1241.
[57]. Thompson, G. E., & Wood, G. C. (1981). Porous anodic film formation on aluminium. Nature, 290(5803), 230.
[58]. Masuda, H., & Fukuda, K. (1995). Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. science, 268(5216), 1466-1468.
[59]. Ono, S., Saito, M., Ishiguro, M., & Asoh, H. (2004). Controlling factor of self-ordering of anodic porous alumina. Journal of The Electrochemical Society, 151(8), B473-B478.
[60]. Parkhutik, V. P., & Shershulsky, V. I. (1992). Theoretical modelling of porous oxide growth on aluminium. Journal of Physics D: Applied Physics, 25(8), 1258.
[61]. Jee, S. E., Lee, P. S., Yoon, B. J., Jeong, S. H., & Lee, K. H. (2005). Fabrication of microstructures by wet etching of anodic aluminum oxide substrates. Chemistry of materials, 17(16), 4049-4052.
[62]. Gowtham, M., Eude, L., Cojocaru, C. S., Marquardt, B., Jeong, H. J., Legagneux, P., ... & Pribat, D. (2007). Controlled fabrication of patterned lateral porous alumina membranes. Nanotechnology, 19(3), 035303.
[63]. Huang, Q., Lye, W. K., & Reed, M. L. (2006). Observation of isolated nanopores formed by patterned anodic oxidation of aluminum thin films. Applied physics letters, 88(23), 233112.
[64]. Ingham, C. J., ter Maat, J., & de Vos, W. M. (2012). Where bio meets nano: the many uses for nanoporous aluminum oxide in biotechnology. Biotechnology advances, 30(5), 1089-1099.
[65]. Chen, C., He, J., Xu, D., Tan, X., Zhou, X., & Wang, X. (2005). Study of nano-Au-assembled amperometric CO gas sensor. Sensors and Actuators B: Chemical, 107(2), 866-871.
[66]. Yang, B., Wang, S., Tian, S., & Liu, L. (2009). Determination of hydrogen sulfide in gasoline by Au nanoclusters modified glassy carbon electrode. Electrochemistry Communications, 11(6), 1230-1233.
[67]. Yang, J. S., Lee, C. C., Yau, S. L., Chang, C. C., Lee, C. C., & Leu, J. M. (2000). Conformation and monolayer assembly structure of a pentiptycene-derived α, ω-alkanedithiol. The Journal of Organic Chemistry, 65(3), 871-877.
[68]. Nuzzo, R. G., & Allara, D. L. (1983). Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 105(13), 4481-4483.
[69]. Sellers, H., Ulman, A., Shnidman, Y., & Eilers, J. E. (1993). Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. Journal of the American Chemical Society, 115(21), 9389-9401.
[70]. Vericat, C., Vela, M. E., Benitez, G., Carro, P., & Salvarezza, R. C. (2010). Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chemical Society Reviews, 39(5), 1805-1834.
[71]. Rhoderick, E. H. (1982). Metal-semiconductor contacts. IEE Proceedings I-Solid-State and Electron Devices, 129(1), 1.
[72]. Chang, C. Y., Fang, Y. K., & Sze, S. M. (1971). Specific contact resistance of metal-semiconductor barriers. Solid-State Electronics, 14(7), 541-550.
[73]. Cheung, S. K., & Cheung, N. W. (1986). Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied Physics Letters, 49(2), 85-87.
[74]. Fujihira, T., & Miyasaka, Y. (1998, June). Simulated superior performances of semiconductor superjunction devices. In Power Semiconductor Devices and ICs, 1998. ISPSD 98. Proceedings of the 10th International Symposium on (pp. 423-426). IEEE.
[75]. Lepselter, M. P., & Sze, S. M. (1968). Silicon Schottky barrier diode with near‐ideal I‐V characteristics. Bell System Technical Journal, 47(2), 195-208.
[76]. Liou, B. W., Lee, C. L., & Lei, T. F. (1995). High breakdown voltage Schottky barrier diode using p/sup+/-polycrystalline silicon diffused guard ring. Electronics Letters, 31(22), 1950-1951.
[77]. Liou, B. W., & Lee, C. L. (2000). Characteristics of high breakdown voltage Schottky barrier diodes using p+-polycrystalline-silicon diffused-guard-ring. Solid-State Electronics, 44(4), 631-638.
[78]. Liou, B. W. (2009). Fabrication of high breakdown voltage silicon Schottky barrier diodes using various edge termination structures. Thin solid films, 517(24), 6558-6564.
[79]. Card, H. C., & Rhoderick, E. H. (1971). Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics, 4(10), 1589.
[80]. Altmannshofer, S., Boudaden, J., Wieland, R., Eisele, I., & Kutter, C. (2017, June). Microwave plasma assisted process for cleaning and deposition in future semiconductor technology. In IOP Conference Series: Materials Science and Engineering (Vol. 213, No. 1, p. 012021). IOP Publishing.
[81]. Altmannshofer, S., Eisele, I., & Gschwandtner, A. (2016). Hydrogen microwave plasma treatment of Si and SiO2. Surface and Coatings Technology, 304, 359-363.
[82]. Sheu, J. K., Lee, M. L., Tun, C. J., & Lin, S. W. (2006). Ultraviolet band-pass Schottky barrier photodetectors formed by Al-doped ZnO contacts to n-Ga N. Applied physics letters, 88(4), 043506.
[83]. Li, B., Adachi, Y., Li, J., Okushi, H., Sakaguchi, I., Ueda, S., ... & Sumiya, M. (2011). Defects in ZnO transparent conductors studied by capacitance transients at ZnO/Si interface. Applied Physics Letters, 98(8), 082101.
[84]. Di Bartolomeo, A. (2016). Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Physics Reports, 606, 1-58.
[85]. Di Bartolomeo, A., Luongo, G., Giubileo, F., Funicello, N., Niu, G., Schroeder, T., ... & Lupina, G. (2017). Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect. 2D Materials, 4(2), 025075.
[86]. Klemenz, C. F., & Malocha, D. C. (2003). Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum. In Proceedings of the 2003 IEEE International (pp. 642-645).
[87]. Matsuda, T., Tsutsumi, J., Inoue, S., Iwamoto, Y., Satoh, Y., Ueda, M., & Ikata, O. (2002, October). High-frequency SAW duplexer with low-loss and steep cut-off characteristics. In Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE (Vol. 1, pp. 71-76). IEEE.
[88]. Wang, W., Lee, K., Yang, S., & Park, I. (2006). Design optimization of SAW pressure sensor with equivalent circuit model. Sensors and Materials, 18(6), 301-312.
[89]. T Han, T., Ji, X., & Shi, W. (2006). Langasite membranes for surface acoustic wave pressure sensors. Sensors and Materials, 18(4), 173-181.
[90]. Arsat, R., Breedon, M., Shafiei, M., Spizziri, P. G., Gilje, S., Kaner, R. B., ... & Wlodarski, W. (2009). Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chemical Physics Letters, 467(4-6), 344-347.
[91]. Sadek, A. Z., Wlodarski, W., Li, Y. X., Yu, W., Li, X., Yu, X., & Kalantar-Zadeh, K. (2007). A ZnO nanorod based layered ZnO/64 YX LiNbO3 SAW hydrogen gas sensor. Thin Solid Films, 515(24), 8705-8708.
[92]. Wen, W., Shitang, H., Shunzhou, L., Minghua, L., & Yong, P. (2007). Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator. Sensors and Actuators B: Chemical, 125(2), 422-427.
[93]. Wang, Y., Zhang, S. Y., Zhou, F. M., Fan, L., Yang, Y. T., & Wang, C. (2011). Love wave hydrogen sensors based on ZnO nanorod film/36° YX-LiTaO3 substrate structures operated at room temperature. Sensors and Actuators B: Chemical, 158(1), 97-103.
[94]. Ippolito, S. J., Ponzoni, A., Kalantar-Zadeh, K., Wlodarski, W., Comini, E., Faglia, G., & Sberveglieri, G. (2006). Layered WO3/ZnO/36° LiTaO3 SAW gas sensor sensitive towards ethanol vapour and humidity. Sensors and Actuators B: Chemical, 117(2), 442-450.
[95]. Reindl, L., Scholl, G., Ostertag, T., Scherr, H., Wolff, U., & Schmidt, F. (1998). Theory and application of passive SAW radio transponders as sensors. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 45(5), 1281-1292.
[96]. ohl, A. (2000). A review of wireless SAW sensors. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 47(2), 317-332.
[97]. Inoue, S., Tsutsumi, J., Iwamoto, Y., Matsuda, T., Miura, M., Satoh, Y., ... & Ikata, O. (2003, October). 1.9 GHz range ultra-low-loss and steep cut-off double mode SAW filter for the Rx band in the PCS antenna duplexer. In Ultrasonics, 2003 IEEE Symposium on (Vol. 1, pp. 389-392). IEEE.
[98]. Shibagaki, N., Akagi, T., Hasegawa, K., Sakiyama, K., & Hikita, M. (1994, October). New design procedures and experimental results of SAW filters for duplexers considering wide temperature range. In Ultrasonics Symposium, 1994. Proceedings., 1994 IEEE (Vol. 1, pp. 129-134). IEEE.
[99]. Rayleigh, L. (1885). On waves propagated along the plane surface of an elastic solid. Proceedings of the London Mathematical Society, 1(1), 4-11.
[100]. Mason, Warren P: Electromechanical Transducers and Wave Filters (Van Nostrand: New York, 1948)
[101]. Mason, W. P. (1956). Physical acoustics and the properties of solids. The Journal of the Acoustical Society of America, 28(6), 1197-1206.
[102]. Leach, W. M. (1994). Controlled-source analogous circuits and SPICE models for piezoelectric transducers. IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 41(1), 60-66.
[103]. Staples, E. J., Schoenwald, J. S., Rosenfeld, R. C., & Hartmann, C. S. (1974, November). UHF surface acoustic wave resonators. In 1974 Ultrasonics Symposium (pp. 245-252). IEEE.
[104]. Inoue, S., Tsutsumi, J., Matsuda, T., Ueda, M., Ikata, O., & Satoh, Y. (2007). Ultra-steep cut-off double mode SAW filter and its application to a PCS duplexer. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 54(9).