研究生: |
廖晨芳 Liao, Chen-Fang |
---|---|
論文名稱: |
以相分離結構之聚偏二氟乙烯/聚環氧乙烷纖維氣凝膠用於日間被動式輻射冷卻應用 Phase-Separated Polyvinylidene Fluoride / Polyethylene Oxide Fibrous Aerogels for Daytime Passive Radiative Cooling Application |
指導教授: |
陳雨澤
Chen, Yu-Ze |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 靜電紡絲法 、輻射冷卻技術 、非溶劑誘導式相分離 、聚偏二氟乙烯 、氣凝膠 |
外文關鍵詞: | Radiative cooling, Electrospinning, PVDF, phase separation, Aerogel |
相關次數: | 點閱:11 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著人口增長和科技工業的發展,全球對能源的需求不斷增加,也加劇了全球暖化的問題。全球電力負擔和全球暖化有一定相關性,得以突顯出輻射冷卻的優勢,輻射冷卻技術通過將熱能直接排放至宇宙,能夠以零能耗實現降溫,且具有廣泛應用的可行性,包含建築節能、戶外電子設備降溫,如太陽能電池,以及人體穿戴裝置、紡織領域。
本研究探討高效率、高耐用性之輻射冷卻氣凝膠,利用靜電紡絲法製備聚偏二氟乙烯(Polyvinylidene fluoride, PVDF)及聚環氧乙烷(Polyethylene oxide, PEO)微米纖維,並將所得到的纖維以冷凍乾燥法製成氣凝膠。在靜電紡絲過程中,因溶劑對非溶劑和溶質的親和力差異,使纖維出現非溶劑誘導式相分離(Nonsolvent-induced phase separation, NIPS),溶劑完全揮發後,在纖維表面形成孔洞結構。當應用於戶外輻射冷卻時,太陽光在入射後,在這些纖維和孔洞結構間多次反射與散射,且因孔洞存在會增大纖維比表面積,藉由提升表面積來增加輻射功率,使該纖維在特定波段下具有良好的反射性與發射性。
確定纖維薄膜光學性能後,進一步將纖維製備成氣凝膠。氣凝膠具備低熱傳導特性,能有效隔絕建築外部熱傳導並保持室內溫度穩定。最後,本研究測試氣凝膠的耐用性與低維護需求,如對紫外線、酸雨環境的耐受能力,以期其能長期應用於戶外環境。
With the growth of population and the development of technology and industry, global energy demand continues to rise, further exacerbating the problem of global warming. There is a correlation between electricity consumption and global warming, highlighting the advantages of radiative cooling. Radiative cooling dissipates heat directly into outer space, enabling zero-energy cooling.
This study develops a high-efficiency and durable daytime radiative cooling aerogel and investigates its potential for outdoor applications. Polyvinylidene fluoride (PVDF) and polyethylene oxide (PEO) microfibers were fabricated via electrospinning and transformed into aerogels through freeze-drying. Nonsolvent-induced phase separation produced porous structures, enhancing light scattering and radiative efficiency. The optimal sample exhibited 90.1% solar reflectance and 96% infrared emittance, along with low thermal conductivity (0.034 W/m·K) and good mechanical strength. Outdoor testing showed an average temperature reduction of 10.1 °C, with excellent UV resistance, self-cleaning, and anti-fouling performance.
(1) IEA. Electricity 2024. 2024.
(2) IEA. Data tool gives fine-grained view of climate vulnerabilities in the energy system and beyond. 21 November 2023.
(3) MetLink. Urban Heat Islands.
(4) IEA. Energy Efficiency 2024. November 2024
(5) 2050淨零排放路徑及策略總說明. 2022.
(6) Li, L.; Liu, G.; Zhang, Q.; Zhao, H.; Shi, R.; Wang, C.; Li, Z.; Zhou, B.; Zhang, Y. Porous Structure of Polymer Films Optimized by Rationally Tuning Phase Separation for Passive All-Day Radiative Cooling. ACS Appl. Mater. Interfaces 2024, 16 (5), 6504-6512.
(7) Liu, J.; Zhang, Y.; Zhang, D.; Jiao, S.; Zhang, Z.; Zhou, Z. Model development and performance evaluation of thermoelectric generator with radiative cooling heat sink. Energy Convers. Manage. 2020, 216, 112923.
(8) Zhang, Y.; Zhu, W.; Zhang, C.; Peoples, J.; Li, X.; Felicelli, A. L.; Shan, X.; Warsinger, D. M.; Borca-Tasciuc, T.; Ruan, X.; et al. Atmospheric Water Harvesting by Large-Scale Radiative Cooling Cellulose-Based Fabric. Nano Lett. 2022, 22 (7), 2618-2626.
(9) Li, W.; Shi, Y.; Chen, K.; Zhu, L.; Fan, S. A Comprehensive Photonic Approach for Solar Cell Cooling. ACS Photonics 2017, 4 (4), 774-782.
(10) Lu, K.; Zhao, B.; Xu, C.; Li, X.; Pei, G. A full-spectrum synergetic management strategy for passive cooling of solar cells. Sol. Energy Mater. Sol. Cells 2022, 245, 111860.
(11) Alshammari, A.; Almatrafi, E.; Rady, M. Radiative coatings for solar cell cooling: Materials, and applications. Sol. Energy 2024, 273, 112545.
(12) Zhao, B.; Lu, K.; Hu, M.; Liu, J.; Wu, L.; Xu, C.; Xuan, Q.; Pei, G. Radiative cooling of solar cells with micro-grating photonic cooler. Renewable Energy 2022, 191, 662-668.
(13) Gong, X.; Ding, M.; Gao, P.; Ji, Y.; Wang, X.; Liu, X.-Y.; Yu, J.; Zhang, S.; Ding, B. High-Performance Waterproof, Breathable, and Radiative Cooling Membranes Based on Nanoarchitectured Fiber/Meshworks. Nano Lett. 2023, 23 (23), 11337-11344.
(14) Gong, Q.; Lu, L.; Chen, J. Progress in radiative cooling materials for urban skin: Achievements in scalability, durability, color modulation, and intelligent thermal regulation. Renewable Energy 2024, 237, 121658.
(15) Chae, D.; Son, S.; Lim, H.; Jung, P. H.; Ha, J.; Lee, H. Scalable and paint-format microparticle–polymer composite enabling high-performance daytime radiative cooling. Mater. Today Phys. 2021, 18, 100389.
(16) Mackenzie, F. T.; Lerman, A. Heat Balance of the Atmosphere and Carbon Dioxide. In Carbon in the Geobiosphere — Earth’s Outer Shell —, Springer Netherlands, 2006; pp 61-88.
(17) Administration, N. O. a. A. The Atmospheric Window. April 10, 2023.
(18) Raman, A. P.; Anoma, M. A.; Zhu, L.; Rephaeli, E.; Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515 (7528), 540-544.
(19) Liu, Y.; Caratenuto, A.; Zheng, Y. Hot-press melt-assembly anisotropic porous structure with enhanced radiative cooling. Appl. Mater. Today 2024, 38, 102184.
(20) Bao, H.; Yan, C.; Wang, B.; Fang, X.; Zhao, C. Y.; Ruan, X. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Sol. Energy Mater. Sol. Cells 2017, 168, 78-84.
(21) Jing, W.; Zhang, S.; Zhang, W.; Chen, Z.; Zhang, C.; Wu, D.; Gao, Y.; Zhu, H. Scalable and Flexible Electrospun Film for Daytime Subambient Radiative Cooling. ACS Appl. Mater. Interfaces 2021, 13 (25), 29558-29566.
(22) Huang, M.-C.; Xue, C.-H.; Huang, J.; Liu, B.-Y.; Guo, X.-J.; Bai, Z.-X.; Wei, R.-X.; Wang, H.-D.; Du, M.-M.; Jia, S.-T.; et al. A hierarchically structured self-cleaning energy-free polymer film for daytime radiative cooling. Chem. Eng. J. 2022, 442, 136239.
(23) Lin, C.; Li, Y.; Chi, C.; Kwon, Y. S.; Huang, J.; Wu, Z.; Zheng, J.; Liu, G.; Tso, C. Y.; Chao, C. Y. H.; et al. A Solution-Processed Inorganic Emitter with High Spectral Selectivity for Efficient Subambient Radiative Cooling in Hot Humid Climates. Adv. Mater. 2022, 34 (12), 2109350.
(24) Lin, K.; Chen, S.; Zeng, Y.; Ho, T. C.; Zhu, Y.; Wang, X.; Liu, F.; Huang, B.; Chao, C. Y.-H.; Wang, Z.; et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 2023, 382 (6671), 691-697.
(25) White, J. R. Polymer ageing: physics, chemistry or engineering? Time to reflect. C.R. Chim. 2006, 9 (11), 1396-1408.
(26) Maraveas, C.; Kyrtopoulos, I. V.; Arvanitis, K. G.; Bartzanas, T. The Aging of Polymers under Electromagnetic Radiation. Polymers 2024, 16 (5), 689.
(27) Jiang, S.; Li, M.; Hu, Z.; Zhang, F.; Zhang, X.; Liu, W.; Omer, A. A. A. Simultaneous Enhancement of Cooling Performance and Durability of the Polymer Radiative Cooler by a High UV-Reflective Polymer Multilayer Film. ACS Appl. Mater. Interfaces 2024, 16 (50), 69940-69950.
(28) Liu, F.; Hashim, N. A.; Liu, Y.; Abed, M. R. M.; Li, K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 2011, 375 (1), 1-27.
(29) Awanis Hashim, N.; Liu, Y.; Li, K. Stability of PVDF hollow fibre membranes in sodium hydroxide aqueous solution. Chem. Eng. Sci. 2011, 66 (8), 1565-1575.
(30) Zhou, L.; Hu, Z.; Liu, F.; Meng, H.; Guo, W.; Li, J.; Qu, W.; Gao, G. Electrospun Self-Pumping dressing with gastrodin for immunomodulation and rapid healing of diabetic wounds. Chem. Eng. J. 2024, 495, 153424.
(31) Mirhaj, M.; Tavakoli, M.; Varshosaz, J.; Labbaf, S.; Jafarpour, F.; Ahmaditabar, P.; Salehi, S.; Kazemi, N. Platelet rich fibrin containing nanofibrous dressing for wound healing application: Fabrication, characterization and biological evaluations. Biomater. Adv. 2022, 134, 112541.
(32) Fan, X.; Dai, J.; Wei, L.; Feng, Y.; Sun, R.; Dong, J.; Wang, Q. Fabrication and thermal insulation properties of ceramic felts constructed by electrospun γ-Y2Si2O7 fibers. Ceram. Int. 2022, 48 (20), 29913-29918.
(33) Lee, S. W.; Park, J.-W.; Ju, Y.-W.; Shin, T. H. Heterogeneous Composite Fibrous Cathode Undergoing Emphasized Active Oxygen Dissociation for La(Sr)Ga(Mg)O3-Based High-Performed Solid Oxide Fuel Cells. Small Struct. 2024, 5 (2), 2300292.
(34) Wang, Q.; Shao, Z.; Sui, J.; Shen, R.; Chen, R.; Gui, Z.; Qi, Y.; Song, W.; Li, G.; Liu, Y.; et al. Preparation of ethyl cellulose bimodal nanofibrous membrane by green electrospinning based on molecular weight regulation for high-performance air filtration. Int. J. Biol. Macromol. 2024, 275, 133411.
(35) Han, J.; Xie, N.; Ju, J.; Zhang, Y.; Wang, Y.; Kang, W. Developments of electrospinning technology in membrane bioreactor: A review. Chemosphere 2024, 364, 143091.
(36) Wang, L.; Yang, L.; Ma, D.; Xu, C.; Liu, X.; Gan, X.; Ge, P.; Zhu, L.; Zhang, G. Grooved TiO2/ZrO2 ceramic fibers with thermal insulation and mechanical properties prepared by coaxial electrospinning. Ceram. Int. 2024, 50 (24, Part A), 53288-53295.
(37) Obeid, M. A.; Akil, L.; Abul-Haija, Y. M.; Khadra, I. Formulation of polycaprolactone meshes by melt electrospinning for controlled release of daunorubicin in tumour therapy. Colloids Surf., A 2024, 699, 134873.
(38) Chansaengsri, K.; Onlaor, K.; Tunhoo, B.; Thiwawong, T. Production of polyvinylidene fluoride nanofibers by free surface electrospinning from wire electrode. Materials Today: Proceedings 2017, 4 (5, Part 2), 6085-6090.
(39) Rodrigues, M. Á. V.; Bertolo, M. R. V.; Horn, M. M.; Lugão, A. B.; Mattoso, L. H. C.; de Guzzi Plepis, A. M. Comparing solution blow spinning and electrospinning methods to produce collagen and gelatin ultrathin fibers: A review. Int. J. Biol. Macromol. 2024, 283, 137806.
(40) Reneker, D. H.; Yarin, A. L. Electrospinning jets and polymer nanofibers. Polymer 2008, 49 (10), 2387-2425.
(41) Xu, W.; Sun, K.; Hou, S.; Chen, A. Research progress of advanced polymer composite antibacterial materials based on electrospinning. Eur. Polym. J. 2025, 222, 113623.
(42) Topuz, F.; Abdulhamid, M. A.; Holtzl, T.; Szekely, G. Nanofiber engineering of microporous polyimides through electrospinning: Influence of electrospinning parameters and salt addition. Mater. Des. 2021, 198, 109280.
(43) Yuan, Q.; Wang, W.; Li, B.; Li, H.; Zhang, X.; Chen, G. Electrospinning of porous fiber-electrode materials for solid oxide fuel cells: Fundamentals and challenges. J. Power Sources 2025, 625, 235616.
(44) Guillen, G. R.; Pan, Y.; Li, M.; Hoek, E. M. V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Industrial & Engineering Chemistry Research 2011, 50 (7), 3798-3817.
(45) Mosqueda-Jimenez, D. B.; Narbaitz, R. M.; Matsuura, T.; Chowdhury, G.; Pleizier, G.; Santerre, J. P. Influence of processing conditions on the properties of ultrafiltration membranes. J. Membr. Sci. 2004, 231 (1), 209-224.
(46) Strathmann, H.; Kock, K. The formation mechanism of phase inversion membranes. Desalination 1977, 21 (3), 241-255.
(47) Xing, D. Y.; Peng, N.; Chung, T.-S. Investigation of unique interactions between cellulose acetate and ionic liquid [EMIM]SCN, and their influences on hollow fiber ultrafiltration membranes. J. Membr. Sci. 2011, 380 (1), 87-97.
(48) Altena, F. W.; Smolders, C. A. Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent. Macromolecules 1982, 15 (6), 1491-1497.
(49) Barzin, J.; Sadatnia, B. Theoretical phase diagram calculation and membrane morphology evaluation for water/solvent/polyethersulfone systems. Polymer 2007, 48 (6), 1620-1631.
(50) Wijmans, J. G.; Kant, J.; Mulder, M. H. V.; Smolders, C. A. Phase separation phenomena in solutions of polysulfone in mixtures of a solvent and a nonsolvent: relationship with membrane formation. Polymer 1985, 26 (10), 1539-1545.
(51) El-Gendi, A.; Abdalla, H. A. M.; Ali, S. Construction of Ternary Phase Diagram and Membrane Morphology Evaluation for Polyamide/Formic acid/Water System. 2012.
(52) Dong, X.; Lu, D.; Harris, T. A. L.; Escobar, I. C. Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development. Membranes 2021, 11 (5), 309.
(53) Mulder, M. Membrane Processes. In Basic Principles of Membrane Technology, Mulder, M. Ed.; Springer Netherlands, 1996; pp 280-415.
(54) Gesser, H. D.; Goswami, P. C. Aerogels and related porous materials. Chem. Rev. 1989, 89 (4), 765-788.
(55) Jadhav, S.; Sarawade, P. Recent advances and prospective of reinforced silica aerogel Nanocomposites and their applications. Eur. Polym. J. 2024, 206, 112766.
(56) Ahmad, S.; Ahmad, S.; Sheikh, J. N. Silica centered aerogels as advanced functional material and their applications: A review. J. Non-Cryst. Solids 2023, 611, 122322.
(57) Liu, W.; Xie, Y.; Deng, Z.; Peng, Y.; Dong, J.; Zhu, Z.; Ma, D.; Zhu, L.; Zhang, G.; Wang, X. Modification of YSZ fiber composites by Al2TiO5 fibers for high thermal shock resistance. J. Adv. Ceram. 2022, 11 (6), 922-934.
(58) Xu, Y.; Zhu, K.; Sun, X.; Xu, S.; Liu, C.; Xiong, S.; Ran, Q. High mechanical flexible and recyclable organic-inorganic hybrid polyhexahydrotriazine aerogel for oil/water separation. Process Safety and Environmental Protection 2023, 177, 299-306.
(59) Wen, Y.; Zhang, J.; Ju, X.; Liu, Y.; Wang, G. Fabrication of glycerol-modulated cellulose/chitosan superhydrophobic aerogel for excellent mechanical performance and high oil-water separation efficiency. J. Environ. Chem. Eng. 2025, 13 (3), 116641.
(60) Bo, X.; Zhu, H.; Hu, Y.; Zhao, G.; Liu, Y.; Zhuang, X. Regulated assembly of PBO nanofibers as aerogel fibers for thermal insulation and electromagnetic shielding. Mater. Today Chem. 2024, 36, 101967.
(61) Duong, T.; Vivero-Lopez, M.; Ardao, I.; Alvarez-Lorenzo, C.; Forgács, A.; Kalmár, J.; García-González, C. A. Alginate aerogels by spray gelation for enhanced pulmonary delivery and solubilization of beclomethasone dipropionate. Chem. Eng. J. 2024, 485, 149849.
(62) Payanda Konuk, O.; Alsuhile, A. A. A. M.; Yousefzadeh, H.; Ulker, Z.; Bozbag, S. E.; García-González, C. A.; Smirnova, I.; Erkey, C. The effect of synthesis conditions and process parameters on aerogel properties. Front. Chem. 2023, 11.
(63) Taleb, M. A.; Kumar, R.; Abdelbaky, N. F.; Barakat, M. A. Nanostructured aerogels for adsorptive removal of pharmaceutical pollutants from wastewater: A review on synthesis and application. J. Environ. Chem. Eng. 2024, 12 (6), 114538.
(64) Karamikamkar, S.; Naguib, H. E.; Park, C. B. Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review. Adv. Colloid Interface Sci. 2020, 276, 102101.
(65) Dong, S.; Maciejewska, B. M.; Lißner, M.; Thomson, D.; Townsend, D.; Millar, R.; Petrinic, N.; Grobert, N. Unveiling the Mechanism of the in Situ Formation of 3D Fiber Macroassemblies with Controlled Properties. ACS Nano 2023, 17 (7), 6800-6810.
(66) Ding, Y.; Yang, L.; Yang, M.; Chen, Z.; Song, K.; Wang, Y.; Erisen, D. E.; Xie, J.; Wu, Q.; Kou, Z. Electrospinning of SiO2-based composites embedded TiO2 nanoparticles with ultra-strong suppression of radiative heat transfer. J. Alloys Compd. 2023, 957, 170331.
(67) Tewari, P. H.; Hunt, A. J.; Lofftus, K. D. Ambient-temperature supercritical drying of transparent silica aerogels. Mater. Lett. 1985, 3 (9), 363-367.
(68) Sozcu, S.; Frajova, J.; Wiener, J.; Venkataraman, M.; Tomkova, B.; Militky, J. Effect of Drying Methods on the Thermal and Mechanical Behavior of Bacterial Cellulose Aerogel. Gels 2024, 10 (7), 474.
(69) Vareda, J. P.; Lamy-Mendes, A.; Durães, L. A reconsideration on the definition of the term aerogel based on current drying trends. Microporous Mesoporous Mater. 2018, 258, 211-216.
(70) Yang, X.; Cranston, E. D. Chemically Cross-Linked Cellulose Nanocrystal Aerogels with Shape Recovery and Superabsorbent Properties. Chem. Mater. 2014, 26 (20), 6016-6025.
(71) Wang, J.; Li, H.; Liu, H.; Feng, Z.; Cui, Z.; Liao, X.; Zhang, B.; Li, Q. Polar bear hair inspired ternary composite ceramic aerogel with excellent interfacial bonding and efficient infrared transmittance for thermal insulation. J. Eur. Ceram. Soc. 2023, 43 (11), 4927-4938.
(72) Nita, L. E.; Ghilan, A.; Rusu, A. G.; Neamtu, I.; Chiriac, A. P. New Trends in Bio-Based Aerogels. In Pharmaceutics, 2020; Vol. 12.
(73) Sorensen, C. M.; Fischbach, D. J. Patterns in Mie scattering. Opt. Commun. 2000, 173 (1), 145-153.
(74) Saidi, I. S.; Jacques, S. L.; Tittel, F. K. Mie and Rayleigh modeling of visible-light scattering in neonatal skin. Appl. Opt. 1995, 34 (31), 7410-7418.
(75) Tong, Z.; Zhang, B.; Yu, H.; Yan, X.; Xu, H.; Li, X.; Ji, H. Si3N4 Nanofibrous Aerogel with In Situ Growth of SiOx Coating and Nanowires for Oil/Water Separation and Thermal Insulation. ACS Appl. Mater. Interfaces 2021, 13 (19), 22765-22773.
(76) Yang, J.; Zhang, X.; Zhang, X.; Wang, L.; Feng, W.; Li, Q. Beyond the Visible: Bioinspired Infrared Adaptive Materials. Adv. Mater. 2021, 33 (14), 2004754.
(77) Xie, H.; Yin, H.; Xia, H.; Fan, C. Efficient radiative cooling with bi-rhombic metamaterial and its application in thermoelectric power generation. Int. J. Heat Mass Transfer 2024, 222, 125176.
(78) Aili, A.; Zhao, D.; Lu, J.; Zhai, Y.; Yin, X.; Tan, G.; Yang, R. A kW-scale, 24-hour continuously operational, radiative sky cooling system: Experimental demonstration and predictive modeling. Energy Convers. Manage. 2019, 186, 586-596.
(79) Aili, A.; Yin, X.; Yang, R. Passive sub-ambient cooling: radiative cooling versus evaporative cooling. Appl. Therm. Eng. 2022, 202, 117909.
(80) Cai, X.; Gao, L.; Wang, J.; Li, D. MOF-Integrated Hierarchical Composite Fiber for Efficient Daytime Radiative Cooling and Antibacterial Protective Textiles. ACS Appl. Mater. Interfaces 2023, 15 (6), 8537-8545.
(81) Zhao, J.; Meng, Q.; Li, Y.; Yang, Z.; Li, J. Structural Porous Ceramic for Efficient Daytime Subambient Radiative Cooling. ACS Appl. Mater. Interfaces 2023, 15 (40), 47286-47293.
(82) Fashandi, M.; Ben Rejeb, Z.; Naguib, H. E.; Park, C. B. Ambient pressure dried silica aerogel – Melamine foam composite with superhydrophobic, self-cleaning and water remediation properties. Sep. Purif. Technol. 2023, 325, 124201.
(83) Zhang, G.; Li, C.; Wang, Y.; Lin, L.; Ostrikov, K. High-Performance Methylsilsesquioxane Aerogels: Hydrolysis Mechanisms and Maximizing Compression Properties. Gels 2023, 9 (9), 720.
(84) Yang, X.; Tang, D.; Wang, L.; Wang, J.; Ye, C.; Liang, Y.; Li, Y.; Tang, Y. Highly compressible and hydrophobic aerogel from microfibrillated cellulose for efficient oil/water separation. Ind. Crops Prod. 2025, 230, 121063.
(85) Chandran, K. S. R. Mechanical fatigue of polymers: A new approach to characterize the SN behavior on the basis of macroscopic crack growth mechanism. Polymer 2016, 91, 222-238.
(86) Liu, X.; Zhang, M.; Hou, Y.; Pan, Y.; Liu, C.; Shen, C. Hierarchically Superhydrophobic Stereo-Complex Poly (Lactic Acid) Aerogel for Daytime Radiative Cooling. Adv. Funct. Mater. 2022, 32 (46), 2207414.
(87) Ji, Q.; Chen, Z.; Xing, S.; Jiao, X.; Chen, D. Mullite Nanosheet/Titania Nanorod/Silica Composite Aerogels for High-Temperature Thermal Insulation. ACS Appl. Nano Mater. 2023, 6 (18), 17218-17228.
(88) Wang, X.; Pan, Y.; Yuan, H.; Su, M.; Shao, C.; Liu, C.; Guo, Z.; Shen, C.; Liu, X. Simple fabrication of superhydrophobic PLA with honeycomb-like structures for high-efficiency oil-water separation. Chin. Chem. Lett. 2020, 31 (2), 365-368.
(89) Yu, Z.; Wan, Y.; Zhou, M.; Mia, M. H.; Huo, S.; Huang, L.; Xu, J.; Jiang, Q.; Zheng, Z.; Hu, X.; et al. Muscle-Inspired Anisotropic Aramid Nanofibers Aerogel Exhibiting High-Efficiency Thermoelectric Conversion and Precise Temperature Monitoring for Firefighting Clothing. Nano Micro Lett. 2025, 17 (1), 214.
(90) Liu, Y.; Bu, X.; Liu, R.; Feng, M.; Zhang, Z.; He, M.; Huang, J.; Zhou, Y. Construction of robust silica-hybridized cellulose aerogels integrating passive radiative cooling and thermal insulation for year-round building energy saving. Chem. Eng. J. 2024, 481, 148780.
(91) Li, Y.; Zhang, X.; Zhang, T.; Chen, Y.; Zhang, S.; Yu, D.; Wang, W. Radiative cooling materials prepared by SiO2 aerogel microspheres@PVDF-HFP nanofilm for building cooling and thermal insulation. Ceram. Int. 2024, 50 (22, Part C), 48031-48040.
(92) Yang, H.; Chen, R.; Cheng, X.; Zhao, L.; Liu, H.; Deng, B.; Xu, Z.; Gong, C. Dual-mode natural silk nanofiber aerogel with porous layered structure for highly stabilized radiative cooling and heating. Int. J. Biol. Macromol. 2025, 300, 140298.
(93) Ren, C.; Wei, Z.; Wang, J.; Cai, C.; Cai, B.; Wang, Z.; Lei, H. Bioinspired superhydrophobic cellulose-based thermal emitters with multiphase scattering structure for durable daytime radiative cooling. Nano Energy 2025, 141, 111076.
(94) Zhang, Q.; Wang, X.; Hu, X.; Yang, D.; Wei, H.; Cao, X.; Hou, Y.; Wang, J. Green synthesis of fluorine-containing polyimide aerogels toward passive daytime radiative cooling for energy saving. Compos. Commun. 2025, 57, 102450.
(95) Jia, H.; Mu, M.; Hou, Y.; Pan, Y.; Liu, C.; Shen, C.; Liu, X. Template-Thermally Induced Phase Separation-Assisted Microporous Regulation in Poly(lactic acid) Aerogel for Sustainable Radiative Cooling. Biomacromolecules 2025, 26 (2), 1184-1194.
(96) Deng, C.; Zhang, H.; Zhao, B.; Chen, Y.; Li, Y.; Zhang, T.; Qiu, F. Highly strength and flame-retardant aerogel cooler with reticular porous structures for building energy saving. Sol. Energy 2024, 279, 112840.
(97) Zhong, S.; Yuan, S.; Zhang, X.; Zhang, J.; Xu, L.; Xu, T.; Zuo, T.; Cai, Y.; Yi, L. Hierarchical Cellulose Aerogel Reinforced with In Situ-Assembled Cellulose Nanofibers for Building Cooling. ACS Appl. Mater. Interfaces 2023, 15 (33), 39807-39817.
(98) Gu, B.; Xu, Q.; Wang, H.; Pan, H.; Zhao, D. A Hierarchically Nanofibrous Self-Cleaning Textile for Efficient Personal Thermal Management in Severe Hot and Cold Environments. ACS Nano 2023, 17 (18), 18308-18317.
(99) Climate.OneBuilding.Org.