| 研究生: |
彭拓榮 Peng, To-Jung |
|---|---|
| 論文名稱: |
鋁鋅系合金共振破壞特性之鋅含量效應探討 Effects of Zn Content on the Vibration Fracture Characteristics of Al-Zn Alloys |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng 陳立輝 Chen, Li-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 共振破壞 、鋁鋅合金 |
| 外文關鍵詞: | Vibration Fracture, Al-Zn Alloy |
| 相關次數: | 點閱:64 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討鋅含量與微觀組織對鋁鋅合金系統之機械性質、共振阻泥、共振破壞行為的影響。
將鑄造與擠形試料於室溫、初始應變速率8´10-4s-1條件下,進行拉伸試驗。根據拉伸試驗結果可知,鑄造與擠形試片之變形阻抗與鋅含量之間存在正相關性,且擠形試料之變形阻抗較同成分之鑄造試片高;鑄造試料之總延伸率與均勻延伸率與鋅含量之間存在負相關性,擠形試料以Al-11wt%Zn具有最佳總延伸與均勻延伸率,約為180%左右。拉伸破斷面特徵大多為延性破壞之酒窩狀組織,但Al-16wt%Zn之擠形試料卻以脆性沿晶破壞形式出現。
振動阻尼值的量測結果顯示,鑄造與擠形試片之對數衰減率隨鋅含量之增加而上升。
在共振過程中,試片末端偏移量的變化與振動次數具有相關性,並可畫成D-N曲線。D-N曲線可分成三區:在第一區試片具有加工硬化的現象,偏移量隨振動次數增加而上升;第二區偏移量維持一定,主裂縫在此區傳播;第三區振動台振動頻率以偏離試片之共振頻率,偏移量隨振動次數增加而下降。根據本實驗結果可將D-N曲線定義為三種型態:A型,以第二階段(偏移量平台區)、第三階段(偏移
量衰減區)為主 ; B型,包含第一階段(偏移量增幅區)、第二階段(偏移量平台區)及第三階段(偏移量衰減區) ; C型,主要由第一階段(偏移量增幅區)與第三階段(偏移量衰減區)所構成。
裂縫路徑觀察的結果顯示,鑄態試片裂縫主要以穿晶形式傳播;擠形試片裂縫沿晶界傳播之比率隨鋅含量增加而上升。共振壽命方面的研究顯示,Al-Zn合金之耐振動破壞阻抗主要受到裂紋傳播阻抗的影響,Al-16wt%Zn擠形試片具有最佳共振壽命。
The effects of Zn content and microstructure on the mechanical property, damping capacity, and resonant vibration fracture of Al-Zn alloys were investigated.
The tensile tests for the as-cast and extruded specimens were performed under initial strain rates 8´10-4s-1, and the tensile temperature was R.T. Experimental results indicated that the flow stress of as-cast and extruded specimens had a positive proportion to Zn content, and the flow stress of extruded specimens were higher than as-cast specimens which were the same Zn content. The total elongation and uniform elongation of as-cast specimens had a negative proportion to Zn content. In particular, Al-11wt%Zn alloy of extruded specimens had maximum total elongation and uniform elongation. Most of the tensile fracture surface of all specimens displayed typical dimple patterns, but it was a brittle inter-granular fracture in Al-16wt%Zn of extruded specimens.
Measurements of the logarithmic decrement d for the as-cast and extruded specimens were increased with increasing Zn content.
The deflection amplitude in resonance can be classified into three stages as a function of vibration cycle. In stage I, the deflection amplitude increases with the number of vibration cycles. The hardness of specimen also increases with vibration cycle during this stage. The test specimens possess a distinct plateau stage of maximum deflection amplitude in second stage. In stage III, the frequency of specimen diverges from the resonance condition. The deflection amplitude decreases with increasing vibration cycles. Experimental results indicate the D-N curves can be classified into three types. For A type, the curve is formed by stage II and stage III. For B type, the curve is formed by stage I、stage II and stage III.
For C type, the curve is formed by stage I and stage III.
In the observation of crack paths, for the as-cast specimens, the crack mainly propagates through grains. The proportion of crack which is propagates through grain boundary in extruded specimens was increases with increasing Zn content. In current study, the vibration resistance of Al-Zn alloy is mainly influenced by crack propagation resistance. The resonant vibration life of Al-16wt%Zn of extruded specimens was best.
1. S.S. Rao, “Mechanical Vibrations”, Addison-Wesley Publishing
Company Inc., 2nd ed., pp. 4-160, 1990.
2. M. Geradin and D. Rixen, “Mechanical Vibrations-Theory and
Application to Structure Dynamics”, John Wiley & Sons Ltd., pp. 1-9,
1994.
3. 金屬新秀,朱志堯,李玉興編著,凡異出版社,新竹,第 140-150
頁,2000。
4. 振動與噪音的阻泥控制,孫慶鴻,張啟軍,姚慧珠編著,機械工
業出版社,北京,第38-57頁,1992。
5. 尖端材料,何麗幸譯,大行出版社,台南,第65-72頁,1999。
6. H. Masumoto and M. Hinai and S. Sawaya, “The Inluence of Cold-Working on the Damping Capacity of Al-Zn Alloys”, Trans. of Japan Inst. Metals., 1983, vol. 24, no. 10, pp.681-688.
7. H. Loffler, “Structure and Structure Development of Al-Zn Alloys”, Akad. Verl., pp. 27, 1995.
8. H. Okamoto, “Al-Zn (Aluminum-Zinc) ”, Journal of Phase Equilibria, 1995, vol. 3, pp. 281-282.
9. H. Loffler, “Structure and Structure Development of Al-Zn Alloys”, Akad. Verl., pp. 27-51, 1995.
10. H. Loffler, “Structure and Structure Development of Al-Zn
Alloys”, Akad. Verl., pp. 186-188, 1995.
11. A.S.Nowick, “Anelastic Effects Arising from Precipitation in Aluminum-Zinc Alloys”, J. of Appl. Phys., 1951, vol. 22, no.7, pp. 925-933.
12. 江東昇,亞共晶鋁-矽(-鎂)之共振裂縫傳播行為研究,成功大學,
博士論文,第一章,1999。
13. 簡絲男,鑄態球狀石墨鑄鐵共振破壞特性之探討,成功大學,第
四章,1999。
14. An Introduction to Mechanical Vibration, R. F. Stridel, Jr., Jhon
Wiley and Soms, Inc., New York, 1988, 3rd ed., pp. 96-266.
15. J. Zhang, R. J. Perez, M. Gupta and E. J. Lavernia, “Damping
Behavior of Particulate Reinforced 2519 Al Metal Matrix
Composites”, Scripta Metall. Mater., 1993, vol. 28, pp. 91-96.
16. J. Zhang, R. J. Perez and E. J. Lavernia, “Dislocation-Induced
68
Damping in Metal Matrix Composites”, J. Mater. Sci., 1993, vol. 28, pp. 835-846.
17. J. Zhang, R. J. Perez and E. J. Lavernia, “Documentation of
Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials”, J. Mater. Sci., 1993, vol.28, pp. 2395-2404.
18. R. J. Perez, J. Zhang, M. N. Gungor and E. J. Lavernia, “Damping
Behavior of 6061Al/Gr Metal Matrix Composites”, Metall. Trans.
A, 1993, vol.24A, pp.701-711.
19. E. J. Lavernia, R. J. Perez and J. Zhang, “Damping Behavior
of Discontinuously Reinforced Al Alloy Metal-Matrix Composites”,
Metall. Mater. Trans. A, 1995, vol. 26A, no. 6, pp. 2803-2818.
20. A. Granato and K. Lucke, “ Theory of Mechanical Damping due to
Dislocation”, J. of Appl. Phys., 1956, vol. 27, pp. 583-593.
21. A. Granato and K. Lucke, “Appliaction of Dislocation Theory to
Internal Friction Phenomena at High Frequencies”, J. of Appl. Phys.,
1956, vol. 27, no. 7, pp. 583-593.
22. M. Okabe, T. Mori and T. Mura, “Internal Friction Caused by
Diffusion around a Second-Phase Particle Al-Si Alloy”, Phil. Mag.A, 1981, vol. 44, pp. 1-12.
23. M. Hinai, S. Sawaya and H. Masumoto, “Damping Characteristics of
Cold-Worked Al-Si Alloys”, Trans. of Japan Inst. Metals, 1986, vol.
27, no. 10, pp. 784-788.
24. X. Zhu, “Stable Damping associated with Linear Viscous Motion
of the Interface in a Multiphase Al-Zn Alloy”, J. of Appl. Phys.,
1990, vol.67, pp. 7287-7291.
25. S. E.Urreta De Preryra, A. A. Ghilarducci de Salva and F. Louchet,
“Precipitation Internal Friction Peak in Al-Mg-Si”, Phys. Stat. Sol.,
1993, vol. 139, pp. 345-360.
26. S. E.Urreta De Preryra, H. Bertorello and A. A. Ghilarducci de Salva, “Precipitation and Grain Boundary Internal Friction Peak in
Al-Mg-Si”, Phys. Stat. Sol., 1988, vol. 108, pp. 577-586.
27. E. Carreno-Morelli, S. E. Urreta De Pereyra and A. A. Ghilarducci
de Salva, “High Temperature Damping in Al-Mg-Si Industrial
Alloys”, Phys. Stat. Sol., 1996, vol. 158, pp. 449-462.
28. I. G. Ritchie, Z.-L. Pan and F. E. Goodwin, “Characterization of the
Damping Properties o Die-Cast Zinc-Aluminum Alloys”, Metall.
Trans. A, 1991, vol. 22A, pp. 617-622.
69
29. I. G. Ritchie and Z.-L. Pan, “High-Damping Metals and Alloys”,
Metall. Trans. A, 1991, vol. 22A, pp. 606-616.
30. 洪佳和,亞共晶鋁-矽(鎂)合金之共振破壞特性及其冶金影響因素
之探討,成功大學,博士論文,第四章,2001。
31. Fatigue Threshold, D. Taylor, Butterworth and co. Ltd, 1989, pp.71-
91.
32. Fatigue of Material, S. Suresh, Cambridge University Press, New
York, 1991, pp. 292.
33. Elementary Engineering Fracture Mechanics, D. Broek, Martinus
Nijhoff Publishers, 1984, pp. 158-163.
34. W. J. kovavs and J. R. Low, JR, “Intergranular Fracture in an
Al-15 Wt Pct Zn Alloy”, Metall. Trans, 1971, vol. 2, pp. 3385-3400.
35. S. Krishnamurthy and S. P. Gupta, “Mechanical Properties of
Thermally Cycled Al-40wt.%Zn Alloy. Part II”, Mater. Sci.
Eng., 1977, vol. 30, pp. 167-174.
36. X. F. Zhu and L. D. Zhang, J. Phys. F 18, L159 (1988); Acta Metall.
Sin. 25, A86 (1989).
37. X. F. Zhu (X. Zhu), Y. T. Wen, and C. Y. Xie, in Proceedings of the
2nd National Conference on Martensitic Phase Transformations, edited
by D. Z. Yang (Dalian, China, 1987), p. 355.
38. X. F. Zhu and L. D. Zhang, in Proceedings of the 9th Interational
Conference on Internal friction and Ultrasonic Attenuation in Solids,
Beijing, 1989, edited by T. S. Ke (International Academic Publisher,
1990) , p. 81.
39. S. M. Mcguire, M. E. Fine and J. D. Achenbach, “Crack Detection
by Resonant Frequency Mearsurements”, Metall. Trans. A, 1995, vol.
26A, pp. 1123-1127.
40. S. M. Mcguire, M. E. Fine and J. D. Achenbach, “Nondestructive
detection of Fatigue Cracks in PM 304 Stainless Steel by Internal
Friction and Elasticity”, J.Mater. Res., 1993, vol. 8, pp. 2216-2223.
41. D. S. Jiang, T. S. Lui and L. H. Chen, “Crack Propagation Behavior
of A356 Aluminum Alloy under Resonant Vibration”, Scripta
Mater., 1997, Vol. 36, pp. 15-20.
42. D. S. Jiang, T. S. Lui and L. H. Chen, “Crack Propagation Behavior
of A356 and Al-1Si-0.3Mg Aluminum Alloys under Resonant
Vibration”, Mater. Trans., JIM, 1999, vol. 40, pp. 283-289.
43. D. S. Jiang, T. S. Lui and L. H. Chen, “Effect of Solution and
70
Modification Treatment on the Crack Propagation Behavior of Al-7Si
Alloy under Resonant Vibration”, Inter. J. Cast Metals Res., 1999,
Vol. 12, pp. 9-16.
44. S. Ceresara, E. Dirusso, P. Fiorini and A. Giarda, “Effect of Si Excess
on the Ageing Behaviour of Ag-Mg2Si 0.8% Alloy”, Mater. Sci. Eng.,
1969, vol. 5, pp. 220-227.
45. S. Suresh, “Crack Deflection: Implication for the Growth o Long and
Short Fatigue Cracks”, Metall. Trans. A, 1983, vol.14A, pp. 2375-
2385.