簡易檢索 / 詳目顯示

研究生: 吳承展
Wu, Cheng-Jhan
論文名稱: 不同熱處理條件對Cu2ZnSn(S, Se)4薄膜微結構及光電特性影響之研究
Different heat treatment effects on the microstructure and optoelectronic characteristic of Cu2ZnSn(S, Se)4 thin films
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 77
中文關鍵詞: 銅鋅錫硫硒硒化預燒結直接升溫法光響應電化學蝕刻
外文關鍵詞: CZTSSe, selenization, pre-sintering, photo-response, electrochemical etching
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討使用直接升溫法合成銅鋅錫硫 (Cu2ZnSnS4) 奈米級粉體,利用配體交換技術將粉體表面吸附的長碳鏈有機分子交換為短碳鏈有機分子,使其在後續熱處理中較容易被移除,減少薄膜殘碳含量。利用旋轉塗佈法於玻璃基板上塗佈厚度約500 nm的前驅物薄膜,藉由X-ray 繞射儀、EDS及拉曼光譜鑑定薄膜之主要結晶相及化學組成,以確認是否有二次相殘留。接著進行直接硒化熱處理或兩階段熱處理使薄膜中的晶粒成長、緻密化。直接硒化為將CZTS薄膜置於石墨盒中,以硒粉提供盒內硒蒸氣進行硒化促進晶粒成長,而兩階段熱處理為在硒化前先將試片於N2氣氛下進行預燒結1小時,提高前驅物薄膜的緻密性。藉由改變硒化時間、預燒溫度與塗佈次數之搭配,探討不同參數下CZTSSe薄膜的緻密度、顯微結構及化學組成均勻性。
    結果發現利用直接升溫法可合成出純相Cubic CZTS奈米粉體,旋轉塗佈2次之CZTS薄膜在硒化條件為500℃- 15 min時有較大的且緻密晶粒及較少二次相,利用霍爾效應分析量測,可獲得載子濃度為7.89×1019 cm-3、遷移率24.3 cm2 V-1 s-1與電阻率為3.27×10-3 Ω-cm之CZTSSe薄膜,而經過250 ℃兩階段燒結之CZTSSe薄膜獲得載子濃度1.21×1019 cm-3,遷移率27.5 cm2V-1S-1,電阻率1.88×10-2 Ω-cm,利用可見光光譜儀量測期能隙值為1.19 eV。使用三電極電化學蝕刻法將薄膜表面之二次相去除再進行光響應量測,於-0.164 V電位(vs RHE)下測得最大光響應電流1.02 mA。

    The Cu2ZnSnS4 (CZTS) nanocrystallites were synthesized by the heating-up process. The ligands exchange process was used to reduce the residual carbon on the CZTS particle surface. CZTS thin films with a thickness of about 500 nm were deposited onto the Mo/SLG substrate by using spin coating process. In this study, two methods were used to densify and promote CZTS grain growth: direct selenization and two-stage heat treatment. The direct selenization process is to selenize CZTS thin films in a graphite box with selenium vapor at 500 ℃ to promote the grain growth. The two-stage sintering is to pre-sinter CZTS thin films under nitrogen atmosphere for 1 h to promote the densification before the selenization. The different selenization time, pre-sintering temperature and coating times effects on the electric properties, densification, microstructures and chemical composition uniformity of CZTSSe films were investigated. A p-type CZTSSe film with the hole concentration of 7.89×1019 cm-3, the mobility of 24.3 cm2 V-1 s-1, and the resistivity of 3.27×10-3 Ω-cm can be obtained by direct selenization of the twice spin-coated CZTS film at 500 ℃ for 15 min. The CZTSSe thin film prepared by two-stage heat treatment (pre-sintering temperature: 250oC and selenization temperature: 500oC/15 min) had electrical properties with the hole concentration of 1.21×1019 cm-3, the mobility of 27.5 cm2 V-1 s-1, and the resistivity of 1.88×10-2 Ω-cm. The electrochemical process of cyclic voltammetry can effectively remove Cu2-xSe particles on the CZTSSe surface leading to a higher photocurrent (1.02 mA).

    摘要 I 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究目的與方法 2 第二章 文獻回顧 3 2-1 銅鋅錫硫 (CZTS) 薄膜太陽能電池 3 2-1-1 元件結構介紹 3 2-1-2 CZTS, CZTSe材料簡介 4 2-1-3 CZTS, CZTSe之二次相及缺陷 8 2-1-4 CZTS, CZTSe之光電性質 13 2-2 CZTS奈米粉體之製備 22 2-2-1 聯胺法(Hydrazine method) 22 2-2-2 溶膠凝膠法(Sol gel method) 22 2-2-3 水熱法(Hydrothermal method) 22 2-2-4 熱注入法(Hot-injection method) 22 2-2-5 直接升溫法(Heating up method) 23 2-3 CZTS薄膜製備 24 2-3-1 真空製程 (Vacuum process) 24 2-3-2 非真空製程(Non-vacuum process) 25 2-4 CZTSSe生成與成長機制 26 2-5 以化學浴方式沉積CdS緩衝層 28 2-6 選擇性蝕刻消除二次相 29 第三章 實驗步驟與分析方法 30 3-1 藥品 30 3-2 CZTS奈米粉體製備 31 3-3 利用配體交換 (Ligand exchange) 去除粉體表面有機分子 32 3-4 CZTS奈米漿料及薄膜製備 32 3-5 CZTS薄膜熱處理 32 3-5-1 氮氣氣氛高壓預燒結 (Pressurized-presinter) 32 3-5-2 硒化 (Selenization) 33 3-6 化學浴沉積CdS緩衝層 34 3-7 循環伏安法蝕刻 (Cyclic Voltammetry, CV) 34 3-8 實驗分析方法 34 3-8-1 粉末結晶相鑑定(XRD) 34 3-8-2 顯微結構分析 (SEM、TEM) 35 3-8-3 霍爾效應分析 (Hall effect) 35 3-8-4 能隙值量測 (UV-Vis-NIR) 36 3-8-5 微拉曼光譜儀 (Micro-Raman Spectrometer) 36 3-8-6 光響應量測 (Photo-response) 36 第四章 結果與討論 37 4-1 CZTS前驅物製備 37 4-1-1 直接升溫法合成之CZTS奈米粉體晶相鑑定 37 4-1-2 旋轉塗佈法製備之CZTS薄膜表面形貌及EDS成分分析 39 4-2 CZTS薄膜熱處理之顯微結構及EDS成分分析 41 4-2-1 不同塗佈層數之影響 41 4-2-2 不同熱處理條件之影響 42 4-3 CZTSSe薄膜霍爾效應分析 58 4-4 CZTSSe薄膜晶相鑑定與能隙分析 61 4-5 循環伏安法蝕刻 63 4-6 CZTSSe薄膜光響應量測 65 第五章 結論 68 參考文獻 69

    [1] W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p‐n junction solar cells," Journal of applied physics, vol. 32, no. 3, pp. 510-519, 1961.
    [2] W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, "Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency," Advanced Energy Materials, vol. 4, no. 7, p. 1301465, 2014.
    [3] W. Xiao, J. Wang, X. Zhao, J. Wang, G. Huang, L. Cheng, L. Jiang, and L. Wang, "Intrinsic defects and Na doping in Cu2ZnSnS4: A density-functional theory study," Solar Energy, vol. 116, pp. 125-132, 2015.
    [4] H. Zhou, T.-B. Song, W.-C. Hsu, S. Luo, S. Ye, H.-S. Duan, C.-J. Hsu, W. Yang, and Y. Yang, "Rational defect passivation of Cu2ZnSn (S, Se) 4 photovoltaics with solution-processed Cu2ZnSnS4: Na nanocrystals," Journal of the American Chemical Society, vol. 135, no. 43, pp. 15998-16001, 2013.
    [5] T. J. Huang, X. Yin, G. Qi, and H. Gong, "CZTS‐based materials and interfaces and their effects on the performance of thin film solar cells," physica status solidi (RRL)–Rapid Research Letters, vol. 8, no. 09, pp. 735-762, 2014.
    [6] C.-P. Tsai, C.-Y. Chien, S.-Y. We, and C.-H. Lai, "CIGS Solar Cell - The Development of Cd-Free Buffer Layer Materials and Process Technology," Instruments Today 2011, vol. 32, 5, 2011.4 2011.
    [7] A. Mondal, "CZTS (Cu2ZnSnS4) photocathode for solar energy conversion and storage," 2019.
    [8] S. Chen, X. Gong, A. Walsh, and S.-H. Wei, "Crystal and electronic band structure of Cu 2 ZnSn X 4 (X= S and Se) photovoltaic absorbers: First-principles insights," Applied Physics Letters, vol. 94, no. 4, p. 041903, 2009.
    [9] X. Wen, "Micro-nanostructure cintrolled carrier transport of Cu2ZnSnS4 photocathode for efficient solar water splitting," 2017.
    [10] K. Ito and T. Nakazawa, "Electrical and optical properties of stannite-type quaternary semiconductor thin films," Japanese Journal of Applied Physics, vol. 27, no. 11R, p. 2094, 1988.
    [11] K. F. Tai, "Investigating the open-circuit voltage deficit in Cu2ZnSn (S, Se) 4 solar cells," 2016.
    [12] C.-Y. Chen, "Earth-abundant Metal Chalcogenides Based Photovoltaics: Cu2ZnSnS4 (CZTS)," chem., 2019, doi: 10.6623/chem.201909_77(3).009.
    [13] C. Wadia, A. P. Alivisatos, and D. M. Kammen, "Materials availability expands the opportunity for large-scale photovoltaics deployment," Environmental science & technology, vol. 43, no. 6, pp. 2072-2077, 2009.
    [14] T. J. Huang, "Synthesis and study of polar Cu2ZnSnS4 nanocrystal inks for energy applications," National University of Singapore (Singapore), 2017.
    [15] M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, and Q. Qiao, "Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells," Energy & Environmental Science, vol. 8, no. 11, pp. 3134-3159, 2015.
    [16] H. Du, F. Yan, M. Young, B. To, C.-S. Jiang, P. Dippo, D. Kuciauskas, Z. Chi, E. A. Lund, and C. Hancock, "Investigation of combinatorial coevaporated thin film Cu2ZnSnS4. I. Temperature effect, crystalline phases, morphology, and photoluminescence," Journal of Applied Physics, vol. 115, no. 17, p. 173502, 2014.
    [17] A. Nagoya, R. Asahi, and G. Kresse, "First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applications," Journal of Physics: Condensed Matter, vol. 23, no. 40, p. 404203, 2011.
    [18] S. Chen, A. Walsh, X. G. Gong, and S. H. Wei, "Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth‐abundant solar cell absorbers," Advanced Materials, vol. 25, no. 11, pp. 1522-1539, 2013.
    [19] K. Biswas, S. Lany, and A. Zunger, "The electronic consequences of multivalent elements in inorganic solar absorbers: Multivalency of Sn in Cu 2 ZnSnS 4," Applied Physics Letters, vol. 96, no. 20, p. 201902, 2010.
    [20] A. Walsh, S. Chen, S. H. Wei, and X. G. Gong, "Kesterite thin‐film solar cells: Advances in materials modelling of Cu2ZnSnS4," Advanced Energy Materials, vol. 2, no. 4, pp. 400-409, 2012.
    [21] S. Chen, A. Walsh, J.-H. Yang, X.-G. Gong, L. Sun, P.-X. Yang, J.-H. Chu, and S.-H. Wei, "Compositional dependence of structural and electronic properties of Cu 2 ZnSn (S, Se) 4 alloys for thin film solar cells," Physical Review B, vol. 83, no. 12, p. 125201, 2011.
    [22] H. Katagiri, K. Jimbo, M. Tahara, H. Araki, and K. Oishi, "The influence of the composition ratio on CZTS-based thin film solar cells," MRS Online Proceedings Library Archive, vol. 1165, 2009.
    [23] T. Meyer, F. Engelhardt, J. Parisi, and U. Rau, "Spectral dependence and Hall effect of persistent photoconductivity in polycrystalline Cu (In, Ga) Se 2 thin films," Journal of applied physics, vol. 91, no. 8, pp. 5093-5099, 2002.
    [24] N. Muhunthan, O. P. Singh, M. Thakur, P. Karthikeyan, D. Singh, M. Saravanan, and V. Singh, "Interfacial properties of CZTS thin film solar cell," Journal of Solar Energy, vol. 2014, 2014.
    [25] H. B. Sawa, M. E. Samiji, and N. R. Mlyuka, "Effects of Selenized DC Sputtered Precursor Stacking Orders on the Properties of Cu2ZnSnSe4 Absorber Layer for Thin Film Solar Cells," Tanzania Journal of Science, vol. 44, no. 4, pp. 1-11, 2018.
    [26] J.-S. Seol, S.-Y. Lee, J.-C. Lee, H.-D. Nam, and K.-H. Kim, "Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process," Solar Energy Materials and Solar Cells, vol. 75, no. 1-2, pp. 155-162, 2003.
    [27] N. Muhunthan, O. P. Singh, S. Singh, and V. Singh, "Growth of CZTS thin films by cosputtering of metal targets and sulfurization in H2S," International Journal of Photoenergy, vol. 2013, 2013.
    [28] M. Z. Ansari and N. Khare, "Structural and optical properties of CZTS thin films deposited by ultrasonically assisted chemical vapour deposition," Journal of Physics D: Applied Physics, vol. 47, no. 18, p. 185101, 2014.
    [29] R. Adhi Wibowo, E. Soo Lee, B. Munir, and K. Ho Kim, "Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films," physica status solidi (a), vol. 204, no. 10, pp. 3373-3379, 2007.
    [30] J. Zhang, B. Long, S. Cheng, and W. Zhang, "Effects of sulfurization temperature on properties of CZTS films by vacuum evaporation and sulfurization method," International Journal of Photoenergy, vol. 2013, 2013.
    [31] J. ZHANG, S. Lexi, F. Yujun, and X. Erqing, "Cu2ZnSnS4 thin films prepared by sulfurization of ion beam sputtered precursor and their electrical and optical properties," Rare metals, vol. 25, no. 6, pp. 315-319, 2006.
    [32] T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, and H. Ogawa, "Preparation of Cu2ZnSnS4 thin films by hybrid sputtering," Journal of Physics and Chemistry of Solids, vol. 66, no. 11, pp. 1978-1981, 2005.
    [33] R. Prajapat and Y. C. Sharma, "Morphological characterization and microstructural study of Cu2ZnSnSe4 thin films with compositional variation," Materials Research Express, vol. 6, no. 11, p. 116459, 2019.
    [34] S. W. Shin, S. Pawar, C. Y. Park, J. H. Yun, J.-H. Moon, J. H. Kim, and J. Y. Lee, "Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films," Solar energy materials and solar cells, vol. 95, no. 12, pp. 3202-3206, 2011.
    [35] F. Yang, R. Ma, and C. Wang, "Fabrication of Cu2ZnSn (S, Se) 4 absorber films by selenization of different Cu2ZnSnS4 nanocrystal coatings," Materials Science in Semiconductor Processing, vol. 74, pp. 13-20, 2018.
    [36] K. L. P. Thi, D. A. Tuan, N. H. Ke, and T. Q. A. Le, "Effect of thickness and sulfur-free annealing atmosphere on the structural, optical and electrical properties of Cu 2 ZnSnS 4 thin films prepared by dip-coating technique," Journal of Sol-Gel Science and Technology, vol. 83, no. 2, pp. 324-331, 2017.
    [37] M. Patel, I. Mukhopadhyay, and A. Ray, "Structural, optical and electrical properties of spray-deposited CZTS thin films under a non-equilibrium growth condition," Journal of Physics D: Applied Physics, vol. 45, no. 44, p. 445103, 2012.
    [38] D. M. Bishop, B. McCandless, T. Gershon, M. A. Lloyd, R. Haight, and R. Birkmire, "Modification of defects and potential fluctuations in slow-cooled and quenched Cu2ZnSnSe4 single crystals," Journal of Applied Physics, vol. 121, no. 6, p. 065704, 2017.
    [39] Z. Zhou, Y. Wang, D. Xu, and Y. Zhang, "Fabrication of Cu2ZnSnS4 screen printed layers for solar cells," Solar Energy Materials and Solar Cells, vol. 94, no. 12, pp. 2042-2045, 2010.
    [40] Y. Wang, Y. Huang, A. Y. Lee, C. F. Wang, and H. Gong, "Influence of sintering temperature on screen printed Cu2ZnSnS4 (CZTS) films," Journal of alloys and compounds, vol. 539, pp. 237-241, 2012.
    [41] M. B. Braun, L. Korala, J. M. Kephart, and A. L. Prieto, "Synthetic Control of Quinary Nanocrystals of a Photovoltaic Material: The Clear Role of Chalcogen Ratio on Light Absorption and Charge Transport for Cu2–x Zn1+ x Sn (S1–y Se y) 4," ACS Applied Energy Materials, vol. 1, no. 3, pp. 1053-1059, 2018.
    [42] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, "Solar water splitting cells," Chemical reviews, vol. 110, no. 11, pp. 6446-6473, 2010.
    [43] C. Persson, "Electronic and optical properties of Cu 2 ZnSnS 4 and Cu 2 ZnSnSe 4," Journal of Applied Physics, vol. 107, no. 5, p. 053710, 2010.
    [44] S. Siebentritt and S. Schorr, "Kesterites—a challenging material for solar cells," Progress in Photovoltaics: Research and Applications, vol. 20, no. 5, pp. 512-519, 2012.
    [45] D. M. Berg, R. Djemour, L. Gütay, G. Zoppi, S. Siebentritt, and P. J. Dale, "Thin film solar cells based on the ternary compound Cu2SnS3," Thin Solid Films, vol. 520, no. 19, pp. 6291-6294, 2012.
    [46] G. Marcano, C. Rincón, L. De Chalbaud, D. Bracho, and G. S. Pérez, "Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu 2 SnSe 3," Journal of Applied Physics, vol. 90, no. 4, pp. 1847-1853, 2001.
    [47] Y. Peter and M. Cardona, Fundamentals of semiconductors: physics and materials properties. Springer Science & Business Media, 2010.
    [48] Y.-T. Lin, J.-B. Shi, Y.-C. Chen, C.-J. Chen, and P.-F. Wu, "Synthesis and characterization of tin disulfide (SnS 2) nanowires," Nanoscale research letters, vol. 4, no. 7, pp. 694-698, 2009.
    [49] F. Sava, A. Lorinczi, M. Popescu, G. Socol, E. Axente, I. Mihailescu, and M. Nistor, "Amorphous SnSe~ 2 films," Journal of optoelectronics and advanced materials, vol. 8, no. 4, p. 1367, 2006.
    [50] J. Vidal, S. Lany, M. d’Avezac, A. Zunger, A. Zakutayev, J. Francis, and J. Tate, "Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS," Applied Physics Letters, vol. 100, no. 3, p. 032104, 2012.
    [51] P. Sinsermsuksakul, J. Heo, W. Noh, A. S. Hock, and R. G. Gordon, "Atomic layer deposition of tin monosulfide thin films," Advanced Energy Materials, vol. 1, no. 6, pp. 1116-1125, 2011.
    [52] M. A. Franzman, C. W. Schlenker, M. E. Thompson, and R. L. Brutchey, "Solution-Phase Synthesis of SnSe Nanocrystals for Use in Solar Cells," Journal of the American Chemical Society, 2010.
    [53] G. Liu, T.Schulmeyer, J.Brötz, A.Klein, and W.Jaegermann, "Interface properties and band alignment of Cu2S/CdS thin film solar cells," Thin Solid Films, vol. 431-432, pp. 477-482, 2003.
    [54] S.Kashida, W.Shimosaka, M.Mori, and D.Yoshimura, "Valence band photoemission study of the copper chalcogenide compounds, Cu2S, Cu2Se and Cu2Te," Journal of physics and chemistry of solids, vol. 64, no. 12, pp. 2357-2363, 2003.
    [55] X. Zheng, Y. Liu, Y. Du, Y. Sun, J. Li, R. Zhang, Q. Li, P. Chen, G. Zhao, and Y. Fang, "P-type quaternary chalcogenides of Cu2ZnSn (S, Se) 4 nanocrystals: Large-scale synthesis, bandgap engineering and their thermoelectric performances," Journal of Alloys and Compounds, vol. 738, pp. 484-490, 2018.
    [56] T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, and D. B. Mitzi, "Beyond 11% efficiency: characteristics of state‐of‐the‐art Cu2ZnSn (S, Se) 4 solar cells," Advanced Energy Materials, vol. 3, no. 1, pp. 34-38, 2013.
    [57] T. K. Todorov, K. B. Reuter, and D. B. Mitzi, "High‐efficiency solar cell with earth‐abundant liquid‐processed absorber," Advanced materials, vol. 22, no. 20, pp. E156-E159, 2010.
    [58] D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, "Device characteristics of a 10.1% hydrazine‐processed Cu2ZnSn (Se, S) 4 solar cell," Progress in Photovoltaics: Research and Applications, vol. 20, no. 1, pp. 6-11, 2012.
    [59] J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, and Y. S. Lee, "High efficiency Cu2ZnSn (S, Se) 4 solar cells by applying a double In2S3/CdS emitter," Advanced Materials, vol. 26, no. 44, pp. 7427-7431, 2014.
    [60] V. Tunuguntla, W.-C. Chen, P.-H. Shih, I. Shown, Y.-R. Lin, J.-S. Hwang, C.-H. Lee, L.-C. Chen, and K.-H. Chen, "A nontoxic solvent based sol–gel Cu 2 ZnSnS 4 thin film for high efficiency and scalable low-cost photovoltaic cells," Journal of Materials Chemistry A, vol. 3, no. 29, pp. 15324-15330, 2015.
    [61] S. M. Camara, L. Wang, and X. Zhang, "Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application," Nanotechnology, vol. 24, no. 49, p. 495401, 2013.
    [62] Q. Guo, G. M. Ford, W.-C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, and R. Agrawal, "Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals," Journal of the American Chemical Society, vol. 132, no. 49, pp. 17384-17386, 2010.
    [63] Y. Cao, M. S. Denny Jr, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, and D. Radu, "High-efficiency solution-processed Cu2ZnSn (S, Se) 4 thin-film solar cells prepared from binary and ternary nanoparticles," Journal of the American Chemical Society, vol. 134, no. 38, pp. 15644-15647, 2012.
    [64] B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, "Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber," Progress in Photovoltaics: Research and Applications, vol. 21, no. 1, pp. 72-76, 2013.
    [65] H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito, and T. Motohiro, "Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique," Applied physics express, vol. 1, no. 4, p. 041201, 2008.
    [66] A. Moholkar, S. Shinde, G. L. Agawane, S. Jo, K. Rajpure, P. Patil, C. Bhosale, and J. Kim, "Studies of compositional dependent CZTS thin film solar cells by pulsed laser deposition technique: An attempt to improve the efficiency," Journal of Alloys and Compounds, vol. 544, pp. 145-151, 2012.
    [67] T. Washio, T. Shinji, S. Tajima, T. Fukano, T. Motohiro, K. Jimbo, and H. Katagiri, "6% Efficiency Cu 2 ZnSnS 4-based thin film solar cells using oxide precursors by open atmosphere type CVD," Journal of Materials Chemistry, vol. 22, no. 9, pp. 4021-4024, 2012.
    [68] S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, and H. Deligianni, "A high efficiency electrodeposited Cu2ZnSnS4 solar cell," Advanced Energy Materials, vol. 2, no. 2, pp. 253-259, 2012.
    [69] J. M. R. Tan, Y. H. Lee, S. Pedireddy, T. Baikie, X. Y. Ling, and L. H. Wong, "Understanding the synthetic pathway of a single-phase quarternary semiconductor using surface-enhanced Raman scattering: a case of wurtzite Cu2ZnSnS4 nanoparticles," Journal of the American Chemical Society, vol. 136, no. 18, pp. 6684-6692, 2014.
    [70] N. J. Carter, R. Mainz, B. C. Walker, C. J. Hages, J. Just, M. Klaus, S. S. Schmidt, A. Weber, W.-C. D. Yang, and O. Zander, "The role of interparticle heterogeneities in the selenization pathway of Cu–Zn–Sn–S nanoparticle thin films: a real-time study," Journal of Materials Chemistry C, vol. 3, no. 27, pp. 7128-7134, 2015.
    [71] T. Maeda, S. Nakamura, and T. Wada, "First principles calculations of defect formation in in-free photovoltaic semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4," Japanese Journal of Applied Physics, vol. 50, no. 4S, p. 04DP07, 2011.
    [72] C. J. Hages, M. J. Koeper, C. K. Miskin, K. W. Brew, and R. Agrawal, "Controlled grain growth for high performance nanoparticle-based kesterite solar cells," Chemistry of Materials, vol. 28, no. 21, pp. 7703-7714, 2016.
    [73] M. Bär, B.-A. Schubert, B. Marsen, S. Krause, S. Pookpanratana, T. Unold, L. Weinhardt, C. Heske, and H.-W. Schock, "Impact of KCN etching on the chemical and electronic surface structure of Cu2ZnSnS4 thin-film solar cell absorbers," Applied Physics Letters, vol. 99, no. 15, p. 152111, 2011.
    [74] K. Timmo, M. Altosaar, J. Raudoja, M. Grossberg, M. Danilson, O. Volobujeva, and E. Mellikov, "Chemical etching of Cu 2 ZnSn (S, Se) 4 monograin powder," in 2010 35th IEEE Photovoltaic Specialists Conference, 2010: IEEE, pp. 001982-001985.
    [75] J. Kois, S. Bereznev, O. Volobujeva, and E. Mellikov, "Electrochemical etching of copper indium diselenide surface," Thin Solid Films, vol. 515, no. 15, pp. 5871-5875, 2007.
    [76] M. H. Sayed, M. Brandl, C. Chory, I. Hammer-Riedel, J. Parisi, L. Gütay, and R. Hock, "In-situ XRD investigation of re-crystallization and selenization of CZTS nanoparticles," Journal of Alloys and Compounds, vol. 686, pp. 24-29, 2016.
    [77] M. Brandl, R. Ahmad, M. Distaso, H. Azimi, Y. Hou, W. Peukert, C. J. Brabec, and R. Hock, "In-situ X-ray diffraction analysis of the recrystallization process in Cu2ZnSnS4 nanoparticles synthesised by hot-injection," Thin Solid Films, vol. 582, pp. 269-271, 2015.
    [78] P. R. Ghediya and T. K. Chaudhuri, "Dark and photo-conductivity of doctor-bladed CZTS films above room temperature," Journal of Physics D: Applied Physics, vol. 48, no. 45, p. 455109, 2015.
    [79] Z. Shi, D. Attygalle, and A. H. Jayatissa, "Kesterite-based next generation high performance thin film solar cell: current progress and future prospects," Journal of Materials Science: Materials in Electronics, vol. 28, no. 2, pp. 2290-2306, 2017.
    [80] S. Delbos, "Kësterite thin films for photovoltaics: a review," EPJ Photovoltaics, vol. 3, p. 35004, 2012.
    [81] A. Redinger and S. Siebentritt, "Coevaporation of Cu 2 ZnSnSe 4 thin films," Applied Physics Letters, vol. 97, no. 9, p. 092111, 2010.
    [82] L. Yao, J. Ao, M.-J. Jeng, J. Bi, S. Gao, G. Sun, Q. He, Z. Zhou, Y. Sun, and L.-B. Chang, "A CZTSe solar cell with 8.2% power conversion efficiency fabricated using electrodeposited Cu/Sn/Zn precursor and a three-step selenization process at low Se pressure," Solar Energy Materials and Solar Cells, vol. 159, pp. 318-324, 2017.
    [83] A. Nagaoka, K. Yoshino, H. Taniguchi, T. Taniyama, and H. Miyake, "Growth of Cu2ZnSnSe4 single crystals from Sn solutions," Journal of Crystal Growth, vol. 354, no. 1, pp. 147-151, 2012.
    [84] N. Beigom Mortazavi Amiri and A. Postnikov, "Secondary phase Cu2SnSe3 vs. kesterite Cu2ZnSnSe4: Similarities and differences in lattice vibration modes," Journal of Applied Physics, vol. 112, no. 3, p. 033719, 2012.
    [85] O. Volobujeva, J. Raudoja, E. Mellikov, M. Grossberg, S. Bereznev, and R. Traksmaa, "Cu2ZnSnSe4 films by selenization of Sn–Zn–Cu sequential films," Journal of physics and chemistry of solids, vol. 70, no. 3-4, pp. 567-570, 2009.
    [86] C.-J. Wang, S.-C. Shei, and S.-J. Chang, "Effect of solvent chelating on crystal growth mechanism of CZTSe nanoink in polyetheramine," IEEE Transactions on Nanotechnology, vol. 14, no. 5, pp. 896-903, 2015.
    [87] M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, and T. Raadik, "Photoluminescence and Raman study of Cu2ZnSn (SexS1− x) 4 monograins for photovoltaic applications," Thin Solid Films, vol. 519, no. 21, pp. 7403-7406, 2011.
    [88] P. Salomé, P. Fernandes, and A. Da Cunha, "Morphological and structural characterization of Cu2ZnSnSe4 thin films grown by selenization of elemental precursor layers," Thin Solid Films, vol. 517, no. 7, pp. 2531-2534, 2009.
    [89] N. J. Carter, W.-C. Yang, C. K. Miskin, C. J. Hages, E. A. Stach, and R. Agrawal, "Cu2ZnSn (S, Se) 4 solar cells from inks of heterogeneous Cu–Zn–Sn–S nanocrystals," Solar energy materials and solar cells, vol. 123, pp. 189-196, 2014.
    [90] T. Chang, Y. Su, and W. Lee, "Improvement on conversion efficiency of CIGS thin film solar cell using electrochemical depleting," Journal of The Electrochemical Society, vol. 161, no. 12, pp. E167-E172, 2014.
    [91] M. Dimitrievska, A. Fairbrother, E. Saucedo, A. Perez-Rodriguez, and V. Izquierdo-Roca, "Influence of compositionally induced defects on the vibrational properties of device grade Cu2ZnSnSe4 absorbers for kesterite based solar cells," Applied Physics Letters, vol. 106, no. 7, p. 073903, 2015.
    [92] L. Risch, L. Vauche, A. Redinger, M. Dimitrievska, Y. Sánchez, E. Saucedo, T. Unold, T. Goislard, C. Ruiz, and L. Escoubas, "Overcoming the V oc limitation of CZTSe solar cells," in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016: IEEE, pp. 0188-0192.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE