| 研究生: |
郭世明 Kuo, Shih-Ming |
|---|---|
| 論文名稱: |
共晶錫-鋅無鉛銲錫接點之電遷移研究 Electromigration in Eutectic Sn-9Zn Lead-Free Solder Joints |
| 指導教授: |
林光隆
Lin, Kwang-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 再結晶 、銲錫 、電遷移 、介金屬化合物 |
| 外文關鍵詞: | recrystallization, electromigration, intermetallic compound, solder |
| 相關次數: | 點閱:109 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係探討在通電狀態下固態錫鋅合金中金屬原子之電遷移(Electromigration,EM)行為。本研究嘗試以共晶錫鋅銲錫來模擬覆晶接合銲錫接點,於Cu/Sn-9Zn/Cu三明治結構系統中進行通電實驗,藉以瞭解於通電狀態下,電子流對固/固界面反應、富錫相微結構、富鋅相微結構、富鋅相晶格結構(方位)之影響並探討在電遷移作用下富鋅相晶體之成長機制。
界面反應分析結果顯示,電子流造成銅電極之大量消耗,驅使銅原子從陰極端界面往陽極遷移,且在靠近陽極端的基地中形成Cu5Zn8 介金屬化合物(Intermetallic Compound,IMC),陰極端銅之平均消耗速率較陽極端快。在電遷移之兩極(Polarity)效應作用下,使得-Cu5Zn8、Cu6Sn5化合物在陰、陽兩極端的厚度有所差異。電遷移之兩極效應促進陰極端界面-Cu5Zn8化合物之成核及成長,於室溫、100oC環境下通電(電流密度為1.0 x 103A/cm2),陰極端Solder/Cu界面-Cu5Zn8化合物的平均成長速率皆較陽極端快,所以在相同的通電時間下,陰極端界面-Cu5Zn8 IMC的厚度皆比陽極端的厚;然而,電遷移之兩極效應卻抑制、減緩了陰極端界面Cu6Sn5化合物之生成,而促進了陽極端界面Cu6Sn5化合物之成核及成長。在電遷移(EM)效應作用下,錫原子被電子驅使往陽極端銅鍍層遷移,沿-Cu5Zn8 IMC晶界擴散進入陽極銅鍍層內部,進而累積在陽極端Cu5Zn8/Cu界面與銅反應形成Cu6Sn5化合物,造成Cu6Sn5化合物往陽極端銅鍍層內部成長。
由於界面Cu5Zn8 IMC之快速成長以及電遷移效應作用所誘發之壓縮應力,會導致在銲錫基地的中間區域形成錫晶粒之突起。於通電狀態下,電子流會誘發界面-Cu5Zn8 IMC的大量生成,以及陰、陽兩極端IMC/Solder界面大量孔洞之形成,在陰極端所形成的孔洞具相當大的尺寸且呈棒狀(Rod-like);在陽極端界面所形成的為較小尺寸的針狀孔洞。然而,於時效熱處理狀態下,在IMC/Solder界面則發現非常少的孔洞。
於通電前,散佈於銲錫合金基材中之第二相(Second Phase)-富鋅相(Zn-rich Phase)無規則地(Randomly)分佈於銲錫基地中,經100oC熱處理24小時或經130oC時效熱處理230小時後,富鋅相晶粒皆等軸(Equiaxial)成長;而經長時間通電處理後,富鋅相晶粒之組織(Texture)方位會趨向與電子流方向一致,且富鋅相晶粒之形態(Morphology)為長方形薄片(Rectangular Sheet)或菱形薄片(Prism Sheet)。
X-ray繞射分析結果顯示,於通電狀態下,電子流會誘發富鋅相晶體內原子之重新排列(Reorientation),隨著通電時間的增加,富鋅相晶粒(0002)面方位的訊號峰逐漸增強,富鋅相晶體之(0002)峯(沿c軸方向)的相對強度遠大於(10 0)峯(垂直c軸方向)的相對強度(通電50、100、230小時後,比值( )分別為3.1、5.2、18.9),此乃表示電遷移效應導致富鋅相晶體由原本等軸晶轉變成具非常強的(0002)之優選方位(Preferred Orientation)甚至於單晶(Single Crystal)結構;然而,富鋅相晶體經時效熱處理230小時,並無特殊之優選方位。
穿透式電子顯微鏡(TEM)分析結果顯示,經長時間通電處理後,等軸富鋅相晶體發生再結晶(Recrystallization)並趨向形成單晶結構,以最密堆積基面(Basal Plane,(0001)或(0002)平面)排列,且其最密堆積平面與電子流方向平行。在電遷移效應作用下,時效處理後之富鋅相多晶晶體(Poly-crystal)再結晶形成具(0001)優選方位之菱形薄片富鋅相晶體,而此晶體乃由六方(Hexagonal)鋅晶體單位晶胞(Unit Cell)之基面所組成。通電狀態下,非契合界面(Incoherent Interface)的成長速率大於半契合界面(Semicoherent Interface),導致生成菱形薄片結構富鋅相晶體。在電遷移效應與非契合界面成長效應之聯合作用下,造成富鋅相晶粒(單晶)沿二維方向成長。
The purpose of this research is to investigate the electromigration (EM) behavior of metallic atoms in Sn-9Zn alloy. It also investigated the effect of electromigration on the interfacial reaction, the microstructural evolution of Sn-rich phase and Zn-rich phase, and the lattice orientation of the Zn-rich crystals in a Cu/Sn-9Zn/Cu sandwich structure. The reorientation and recrystallization behaviors of dispersed Zn second phases in Sn-9Zn alloy upon electromigration was also proposed in this study.
Electromigration resulted in the consumption of Cu from the cathode which migrated to the anode and formed Cu5Zn8 near the anode in bulk solder. The average consumption rate of Cu on the cathode side was much faster than that of Cu on the anode side. The occurrences upon electromigration (EM) shows significant polarity effect on the nucleation and growth rate of the IMCs (-Cu5Zn8, Cu6Sn5). Upon current stressing, the growth rate of the Cu-Zn intermetallic compound (-Cu5Zn8) at the cathode interface was much faster than that at the anode. However, the nucleation and growth of the Cu6Sn5 IMC at the anode interface were enhanced, though retarded at the cathode, under the influence of electric current. The growth of the Cu6Sn5 phase, which nucleated at the anodic Cu5Zn8/Cu interface into the anodic Cu layer, was ascribed to the grain-boundary migration of Sn induced by electromigration. Consequently, the anodic Cu6Sn5/Cu interface was induced to move toward the anodic Cu due to electromigration.
The formation of hillocks in the middle of bulk solder was ascribed to the compressive stress driven by electromigration and IMC formation. The electromigration results in void formation at the IMC/solder interface regardless of the electron flow direction. There is difference in the morphology and dimension of voids at the two ends of the solder (cathode and anode). Relatively large voids (rod shape) were formed at the cathode, yet small needle-like voids were formed at the anode. Nevertheless, fewer void was seen at the solder/IMC interface after thermal aging.
Before current stressing, the fine dispersed Zn-rich phases randomly distribute in the matrix. The needle Zn-rich phase of the Sn-9Zn eutectic structure converts to equi-axial crystals after aging at 100oC for 24 hours (As prepared specimen) or at 130oC for 230 hours. Notably, the random texture of the Zn-rich phase crystals became laterally aligned after current stressing for 230 hours. The electrical current stressing converts the equi-axial Zn grains to longitudinal thin sheet or thin prism sheet crystals.
XRD analysis showed that the reorientation of the second phase Zn-rich crystals was induced by electric current. The Zn-rich phase grew with a preferred orientation of (0002) upon current stressing. The remarkable difference in peak intensity between (0002) and (10 0) after 230 hours of current stressing showed that the thin sheet prism crystals of the Zn phase exhibit preferred orientation or even grow to single crystal. However, the Zn phase exhibits both (10 0) and (0002) lattice planes with close intensity upon aging at 130oC for up to 230 hours.
TEM analysis showed that electromigration resulted in the recrystallization of the equiaxial Zn-rich phase crystal into a single crystal composed of the close-packed basal plane of the hexagonal Zn phase. The Zn poly-crystal of aged Sn-9Zn alloy recrystallized under electromigration to form a thin prism sheet crystal of basal plane unit with (0001) preferred orientation. The mobility of the semicoherent interface is much smaller than that of the incoherent interface. Consequently, the electromigration of Zn within the Zn phase gave rise to the formation of the thin prism sheet crystals. The electromigration behavior induced the continuing movement of the Zn atoms towards the incoherent interface which synergizes the two dimensional growing behavior of the grains and thus facilitated the formation of prism sheet crystals with the preferred [0001] orientation.
1. M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics”, Materials Science and Engineering R, Vol. 27, No. 5~6, 2000, pp. 95~141.
2. P. T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing Solders”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, 1993, pp. 14~19.
3. A. Z. Miric and A. Girusd, “Lead-Free Alloys”, Soldering & Surface Mount Technology, Vol. 10, No. 1, 1998, pp. 19~25.
4. R. R. Tummala, Fundamentals of Microsystems Packaging, McGraw-Hill, Chap. 21, 2001, p. 856.
5. B. Trumble, ”Get the Lead Out!”, IEEE Spectrum, Vol. 35, No. 5, 1998, pp. 55~60.
6. J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly”, Internationals Materials Reviews, Vol. 40, No. 2, 1995, pp. 65~92.
7. M. McCormack, S. Jin, H. S. Chen, and D. A. Machusak, “New Lead-Free Sn-Zn-In Solder Alloys”, Journal of Electronic Materials, Vol. 23, No. 7, 1994, pp. 687~690.
8. C. H. Wang and S. W. Chen, “Sn-0.7wt. %Cu /Ni Interfacial Reactions at 250oC”, Acta Materialia, Vol. 54, No. 1, 2006, pp. 247~253.
9. S. Jin, “Developing Lead-free Solders: A Challenge and Opportunity”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, 1993, pp. 13~13.
10. C. Melton, “Alternative of Lead Bearing Solder Alloys”, Proceeding of the 1993 IEEE International Sympocium on Electronics and the Environment, Arlington, USA, 1993, pp. 94~97.
11. N. C. Lee, “Getting Ready for Lead-free Solders”, Soldering & Surface Mount Technology, Vol. 9, No. 2, 1997, pp. 65~68.
12. M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York, 1958, pp. 52, 336, 633, 861, 1107, 1217.
13. K. Suganuma and K. Niihara, “Wetting and Interface Microstructure between Sn-Zn Binary Alloys and Cu”, Journal of Materials Research, Vol. 13, No. 10, 1998, pp. 2859~2865.
14. S. Vaynman and M. E. Fine, “Flux Development for Lead-free Solders Containing Zinc”, Journal of Electronic Materials, Vol. 29, No. 10, 2000, pp. 1160~1163.
15. K. L. Lin and C. L. Shih, “Wetting Interaction between Sn-Zn-Ag Solders and Cu”, Journal of Electronic Materials, Vol. 32, No. 2, 2003, pp. 95~100.
16. T. Takemoto and T. Funaki, “Role of Electrode Potential Difference between Lead-Free Solder and Copper Base Metal in Wetting”, Materials Transactions (JIM), Vol. 43, No. 8, 2002, pp. 1784~1790.
17. J. M. Song, G. F. Lan, T. S. Lui, and L. H. Chen, “Microstructural Features and Vibration Fracture Behavior of Sn-Zn-Ag Solder Alloys”, IEEE CMPT, Internationl Symposium on Electronic Materials Packaging, Taiwan, 2002, pp. 276~281.
18. K. L. Lin, L. H. Wen, and T. P. Liu, “The Microstructures of the Sn-Zn-Al Solder Alloys”, Journal of Electronic Materials, Vol. 27, No. 3, 1998, pp. 97~105.
19. K. L. Lin and T. P. Liu, “High-Temperature Oxidation of A Sn-Zn-Al Solder”, Oxidation of Metals, Vol. 5, No. 3-4, 1998, pp. 255~267.
20. S. P. Yu, M. H. Hon, and M. C. Wang, “The Adhesion Strength of a Lead-free Solder Hot-dipped on Copper Substrate”, Journal of Electronic Materials, Vol. 29, No. 2, 2000, pp. 237~243.
21. M. McCormack and S. Jin, “Progress in the Design of New Lead-Free Solder Alloys”, Journal of the Minerals Metals & Materials Society, Vol. 45, No. 7, 1993, pp. 36~40.
22. A. M. Jackson, P. T. Vianco, and I. Artaki, “Manufacturing Feasibility of Several Lead-Free Solders for Electronic Assembly”, Proceeding of the 7th International SAMPE Electronics Conference, Parsippany, NJ, USA, 1994, pp. 381~393.
23. T. Sugizaki, H. Nakao, T. Kimura, and T. Watanabe, “BGA Jointing Property of Sn-8.8 mass % Zn and Sn-8.0 mass % Zn-3.0 mass % Bi Solder on Electroless Nickel-Phosphorus/Immersion Gold Plated Substrates”, Materials Transactions, Vol. 44, No. 9, 2003, pp. 1790~1796.
24. R. A. Islam, B. Y. Wu, M. O. Alam, Y. C. Chan, and W. Jillek, “Investigations on Microhardness of Sn-Zn Based Lead-Free Solder Alloys as Replacement of Sn-Pb Solder”, Journal of Alloys and Compounds, Vol. 392, No. 1-2, 2005, pp. 149~158.
25. F. Hua and J. Glazer, “Lead-Free Solders for Electronic Assembly”, TMS Annual Meeting, Design Reliability of Solders and Soder Interconnections, Orlando, USA, 1997, pp. 65~73.
26. J. M. Song and Z. M. Wu, “Variable Eutectic Temperature Caused by Inhomogeneous Solute Distribution in Sn-Zn System”, Scripta Materialia, Vol. 54, No. 8, 2006, pp. 1479~1483.
27. K. I. Chen and K. L. Lin, “The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys-The Effect of Ga”, Journal of Electronic Materials, Vol. 32, No. 10, 2003, pp. 1111~1116.
28. K. L. Lin, K. I. Chen, and P. C. Shih, “A Potential Drop-in Replacement for Eutectic Sn-Pb Solder-The Sn-Zn-Ag-Al-Ga Solder”, Journal of Electronic Materials, Vol. 32, No. 12, 2003, pp. 1490~1495.
29. J. H. Lau and Y. H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, New York, USA, 1997, Chapter 3.
30. C. H. Zhong and S. Yi, “Solder Joint Reliability of Plastic Ball Grid Array Packages”, Soldering and Surface Mount Technology, Vol. 11, No. 1, 1999, pp. 44~48.
31. R. H. Esser, A. Dimoulas, N. Strifas, A. Christou, and N. Papanicolau, “Materials Interfaces in Flip Chip Interconnects for Optical Components; Performance and Degradation Mechanisms”, Microelectronics Reliability, Vol. 38, No. 6-8, 1998, pp. 1307~1312.
32. C. Y. Liu, H. K. Kim, and K. N. Tu, “Dewetting of Molten Sn on Au/Cu/Cr Thin-Film Metallization”, Applied Physics Letter, Vol. 69, No. 23, 1996, pp. 4014~4016.
33. C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, “Effect of Cu Concentration on the Reactions between Sn-Ag-Cu Solders and Ni”, Journal of Electronic Materials, Vol. 31, No. 6, 2002, pp. 584~590.
34. Y. D. Jeon, S. Nieland, A. Ostmann, H. Reichl, and K. W. Paik, “Studies on the Interfacial Reactions between Electroless Ni UBM and 95.5Sn-4.0Ag-0.5Cu Alloy”, Proceedings-Electronic Components and Technology Conference, 2002, pp. 740~746.
35. A. Zribi, A. Clark, L. Zavalij, P. Borgesen, and E. J. Cotts, “The Growth of Intermetallics Compounds at Sn-Ag-Cu Solder /Cu and Sn-Ag-Cu Solder /Ni Interfaces and The Associated Evolution of the Solder Microstructure”, Journal of Electronic Materials, Vol. 30, No. 6, 2001, pp. 1157~1164.
36. A. Hirose, T. Fujii, T. Imamura, and K. F. Kobayashi, “Influence of Interfacial Reaction on Reliability of QFP Joints with Sn-Ag Based Pb Free Solders”, Materials Transactions (JIM), Vol. 42, No. 5, 2001, pp. 794~802.
37. A. D. Roming Jr., F. G. Yost, and P. F. Hlava, “Intermetallic Layer Growth in Cu/Sn-In Solder Joints”, Proceedings-Annual Conference Microbeam Analysis Society, Bethlehem, USA, 1984, pp. 87~92.
38. K. Suganuma, T. Murata, H. Noguchi, and Y. Toyoda, “Heat Resistance of Sn-9Zn Solder /Cu Interface with or without Coating”, Journal of Materials Research, Vol. 15, No. 4, 2000, pp. 884~891.
39. M. Date, T. Shoji, M. Fujiyoshi, K. Sato, and K. N. Tu, “Ductile-to-brittle Transition in Sn-Zn Solder Joints Measured by Impact Test”, Scripta Materialia, Vol. 51, No. 7, 2004, pp. 641~645.
40. K. Suganuma, “Advances in Lead-Free Electronics Soldering”, Current Opinion in Solid State and Materials Science, Vol. 5, No. 1, 2001, pp. 55~64.
41. S. P. Yu, M. C. Wang, and M. H. Hon, “Formation of Intermetallic Compounds at Eutectic Sn-Zn-Al Solder/Cu Interface”, Journal of Materials Research, Vol. 16, No. 1, 2001, pp. 76~82.
42. Y. Chonan, T. Komiyama, J. Onuki, R. Urao, T. Kimura, and T. Nagano, “Influence of P Content in Electroless Plated Ni-P Alloy Film on Interfacial Structures and Strength between Sn-Zn Solder and Plated Au/Ni-P Alloy Film”, Materials Transactions, Vol. 43, No. 8, 2002, pp. 1887~1890.
43. C. H. Yu, K. S. Kim, H. I. Kim, and H. J. Jeon, “Influence of Interfacial Reaction Layer on Reliability of Chip-scale Package Joint from Using Sn-37Pb and Sn-8Zn-3Bi Solder”, Journal of Electronic Materials, Vol. 34, No. 2, 2005, pp. 161~167.
44. S. K. Kang, W. K. Choi, M. J. Yim, and D. Y. Shih, “Studies of the Mechanical and Electrical Properties of Lead-free Solder Joints”, Journal of Electronic Materials, Vol. 31, No. 11, 2002, pp. 1292~1303.
45. C. W. Huang and K. L. Lin, “ Interfacial Reactions of Lead-free Sn-Zn Based Solders on Cu and Cu Plated Electroless Ni-P/Au Layer under Aging at 150°C”, Journal of Materials Research, Vol. 19, No. 12, 2004, pp. 3560~3568.
46. M. O. Alam and Y. C. Chan, “Solid-state Growth Kinetics of Ni3Sn4 at the Sn-3.5Ag Solder/Ni Interface”, Journal of Applied Physics, Vol. 98, No. 12, 2005, pp. 123527-1 ~123527-4.
47. C. M. Liu, C. E. Ho, W. T. Chen, and C. R. Kao, “Reflow Soldering and Isothermal Solid-state Aging of Sn-Ag Eutectic Solder on Au/Ni Surface Finish”, Journal of Electronic Materials, Vol.30, No. 9, 2001, pp. 1152~1156.
48. J. Y. Park, C. W. Yang, J S. Ha, C. U. Kim, E. J. Kwon, S. B. Jung, and C. S. Kang, “Investigation of Interfacial Reaction Between Sn-Ag Eutectic Solder and Au/Ni/Cu/Ti Thin Film Metallization”, Journal of Electronic Materials, Vol. 30 No. 9, 2001, pp. 1165~1170.
49. W. K. Choi and H. M. Lee, “Effect of Ni Layer Thickness and Soldering Time on Intermetallic Compound Formation at the Interface Between Molten Sn-3.5Ag and Ni/Cu Substrate”, Journal of Electronic Materials, Vol. 28, No. 11, 1999, pp. 1251~1255.
50. H. T. Luo and S. W. Chen, “Phase Equilibria of the Ternary Ag-Cu-Ni System and the Interfacial Reactions in the Ag-Cu/Ni Couples”, Journal of Materials Science, Vol. 31, No. 19, 1996, pp. 5059~5067.
51. I. A. Aksay, C. E. Hoge, and J. A. Pask, “Wetting Under Chemical Equilibrium and Nonequilibrium Conditions”, Journal of Physical Chemistry, Vol. 78, No. 12, 1974, pp. 1178~1183.
52. T. B. Massalski, Binary Phase Diagrams, ASM, Metal Park, Ohio, USA, Volume 1, 1986, p. 965.
53. K. N. Tu, “Cu/Sn Interfacial Reactions: Thin-Film Case Versus Bulk Case”, Materials Chemistry and Physics, Vol. 46, No. 2-3, 1996, pp. 217~223.
54. K. N. Tu, “Interdiffusion and Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metallurgica, Vol. 21, No. 4, 1973, pp. 347~354.
55. K. N. Tu and R. D. Thompson, “Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metallurgica, Vol. 30, No. 5, 1982, pp. 947~952.
56. P. T. Vianco, K. L. Erickson, and P. L. Hopkins, “Solid State Intermetallic Compound Growth between Copper and High Temperature, Tin-Rich Solders--Part I: Experimental Analysis”, Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp. 721~728.
57. P. T. Vianco, P. F. Hlava, and A. C. Kilgo, “Intermetallic Compound Layer Formation between Copper and Hot-dipped 100In, 50In-50Sn, 100Sn, and 63Sn-37Pb Coatings”, Journal of Electronic Materials, Vol. 23, No. 7, 1994, pp. 583~594.
58. S. Bader, W. Gust, and H. Hieber, “Rapid Formation of Intermetallic Compounds by Interdiffusion in the Cu-Sn and Ni-Sn Systems”, Acta Metallurgica et Materialia, Vol. 43, No. 1, 1995, pp. 329~337.
59. S. K. Kang, R. S. Rai, and S. Purushothaman, “Interfacial Reactions During Soldering with Lead-Tin Eutectic and Lead-free Tin-rich Solders”, Journal of Electronic Materials, Vol. 25, No. 7, 1996, pp. 1113~1120.
60. J. O. G. Parent, D. D. L. Chung, and I. M. Bernstein, “Effects of Intermetallic Formation at the Interface between Copper and Lead-tin Solder”, Journal of Materials Science, Vol. 23, No. 7, 1988, pp. 2564~2572.
61. H. K. Kim and K. N. Tu, “Rate of Consumption of Cu in Soldering Accompanied by Ripening”, Applied Physics Letters, Vol. 67, No. 14, 1995, pp. 2002~2004.
62. L. E. Felton, C. H. Raeder, and D. B. Knorr, “The Properties of Tin-Bismuth Alloy Solders”, Journal of the Minerals Metals & Materials Society, Vol. 45, No. 7, 1993, pp. 28~32.
63. K. Suganuma, “Interface Phenomena in Lead-free Soldering”, Environmentally Conscious Design and Inverse Manufacturing, 1999 Proceeding, EcoDesign ’99 First International Symposium On, Tokyo, 1999, pp. 620~625.
64. J. W. Morris, Jr. , J. L. Freer Goldstrin, and Z. Mei, “Microstructure and Mechanical-properties of Sn-in and Sn-Bi Solders”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, 1993, pp. 25~27.
65. H. M. Lee, S. W. Yoon, and B. J. Lee, “Thermodynamic Prediction of Interface Phases at Cu/Solder Joints”, Journal of Electronic Materials, Vol. 27, No. 11, 1998, pp. 1161~1166.
66. K. Zeng and K. N. Tu, “Six Cases of Reliability Study of Pb-free Solder Joints in Electronic Packaging Technology”, Materials Science and Engineering R, Vol. 38, No. 2, 2002, pp. 55~105.
67. T. Taguchi, R. Kato, and S. Akita, “Lead-free Interfacial Structures and Their Relationship to Au Plating Including Accelerated Thermal Cycle Testing of Non-leaden BGA Spheres”, Electronic Components and Technology Conference, 2001 Proceedings 51st, Orlando, 2001, pp. 675~680.
68. S. W. Yoon, J. R. Soh, H. M. Lee, and B. J. Lee, “Thermodynamics-aided Alloy Design and Evaluation of Pb-free Solder, SnBiInZn system”, Acta Materialia, Vol. 45, 1997, pp. 951~960.
69. B. J. Lee, N. M. Hwang, and H. M. Lee, “Prediction of Interface Reaction Products between Cu and Various Solder Alloys by Thermodynamic Calculation”, Acta Materialia, Vol. 45, 1997, pp. 1867~1874.
70. J. V. Ek and A. Lodder, “Electromigration of Hydrogen in Metals”, Defect and Diffusion Forum, Vol. 115, 1994, pp. 3~4.
71. G. A. Rinne, “Issues in Accelerated Electromigration of Solder Bumps”, Microelectronics Reliability, Vol. 43, No. 12, 2003, pp. 1975~1980.
72. M. Tammaro, “Investigation of the Temperature Dependence in Black' s Equation Using Microscopic Electromigration Modeling”, Journal of Applied Physics, Vol. 86, No. 7, 1999, pp. 3612~3616.
73. V. B. Fiks, “On the Mechanism of the Ions in Metals”, Sov. Phys. Solids state (English trans.), Vol. 1, No. 1. 1959, pp. 14~28.
74. H. B. Huntington and A. R. Grone, “Current-induced Marker Motion in Gold Wires”, Journal of Physics and Chemistry of Solids, Vol. 20, No. 1, 1961, pp. 76~87.
75. T. Y. Lee, K. N. Tu, and D. R. Frear, “Electromigration of Eutectic SnPb and SnAg3.8Cu0.7 Flip Chip Solder Bumps”, Journal of Applied Physics, Vol. 90, No. 9, 2001. pp. 4502~4508.
76. Y. H. Lin, Y. C. Hu, C. M. Tsai, C. R. Kao, and K. N. Tu, “In-situ Observation of the Void Formation-and-propagation Mechanism in Solder Joints under Current-stressing”, Acta Materialia, Vol. 53, No. 1, 2005. pp. 2029~2035.
77. J. W. Nah, j. H. Kim, H. M. Lee, and K. W. Paik, “Electromigration in Flip Chip Solder Bump of 97Pb-3Sn/37Pb-63Sn Combination Structure”, Acta Materialia, Vol. 52, No. 1, 2004. pp. 129~136.
78. C. L. Lai, C. H. Lin, and C. Chen, “Electromigration at the High-Pb-eutectic SnPb Solder Interface”, Journal of Materials Research, Vol. 19, No. 2, 2004, pp. 550-556.
79. E. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius, and H. Balkan, “Current-crowding-induced Electromigration Failure in Flip Chip Solder Joints”, Applied Physics Letters, Vol. 80, No. 4, 2002, pp. 580~582.
80. Y. H. Lin, C. M. Tsai, Y. C. Hu, Y. L. Lin, and C. R. Kao, “Electromigration Induced Failure in Flip Chip Solder Joints”, Journal of Electronic Materials, Vol. 34, No. 1, 2005, pp. 27~33.
81. C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, “Microstructure- Electromigration Correlation in a Thin Stripe of Eutectic SnPb Solder Stressed between Cu Electrodes”, Applied Physics Letters, Vol. 75, No. 1, 1999, pp. 58~60.
82. C. Y. Liu, C. Chen, and K. N. Tu, “Electromigration in Sn-Pb Solder Strips as a Function of Alloy Composition”, Journal of Applied Physics, Vol. 88, No. 10, 2000, pp. 5703~5709.
83. Q. T. Huynh, C. Y. Liu, C. Chen, and K. N. Tu, “Electromigration in Eutectic SnPb Solder Lines”, Journal of Applied Physics, Vol. 89, No. 8, 2001, pp. 4332~4335.
84. S. Brandenberg and S. Yeh, “ Electromigration Studies of Flip Chip Bump Solder Joints”, Surface Mount International Conference and Exposition, SMI 98 Proceedings, 1998, pp. 337~344.
85. M. Ding, G. Wang, B. Chao, P. S. Ho, P. Su, and T. Uehling, “Effect of Contact Metallization on Electromigration Reliability of Pb-free Solder Joints”, Journal of Applied Physics, Vol. 99, 2006, pp. 094906-1~094906-6.
86. W. J. Choi, E. C. C. Yeh, and K. N. Tu, “Mean-time-to-failure Study of Flip Chip Solder Joints on Cu/Ni(V)/Al Thin-film Under-bump-metallization”, Journal of Applied Physics, Vol. 94, No. 9, 2003, pp. 5665~5671.
87. T. Y. Lee and K. N. Tu, “Electromigration of Eutectic SnPb Solder Interconnects for Flip Chip Technology”, Journal of Applied Physics, Vol. 89, No. 6, 2001, pp. 3189~3194.
88. Y. C. Hsu, T. L. Shao, C. J. Yang, and C. Chen, “Electromigration Study in SnAg3.8Cu0.7 Solder Joints on Ti/Cr-Cu/Cu Under-bump Metallization”, Journal of Electronic Materials, Vol. 32, No. 11, 2003, pp. 1222~1227.
89. A. Christou, Electromigration and Electroinc Device Degradation, Wiley, New York, 1994, pp. 28~31.
90. T. L. Shao, S. W. Liang, T. C. Lin, and C. Chen, “Three-dimensional Simulation on Current-density Distribution in Flip-chip Solder Joints under Electric Current Stressing”, Journal of Applied Physics, Vol. 98, No. 6, 2005, pp. 044509-1~044509-8.
91. J. W. Nah, K. W. Paik, J. O. Suh, and K. N. Tu, “Mechanism of Electromigration-induced Failure in the 97Pb-3Sn and 37Pb-63Sn Composite Solder Joints”, Journal of Applied Physics, Vol. 94, No. 12, 2003, pp. 7560~7566.
92. Y. H. Liu and K. L. Lin, “ Damages and Microstructural Variation of High-lead and Eutectic SnPb Composite Flip Chip Solder Bumps Induced by Electromigration”, Journal of Materials Research, Vol. 20, No. 8, 2005, pp. 2184~2193.
93. Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, “ Electromigration Failure in Flip Chip Solder Joints due to Rapid Dissolution of Copper”, Journal of Materials Research, Vol. 18, No. 11, 2003, pp. 2544~2548.
94. W. Roush and J. Jaspal, “Thermomigration in Lead-indium Solder”, Proceedings of the Electron. Compon. 32nd Conference, San Diego, CA, 1982, p. 342.
95. G. J. Van Gurp, P. J. De Waard, and F. J. Du Chatenier, “Thermomigration in Indium and Indium Alloy Films”, Journal of Applied Physics, Vol. 58, No. 2, 1985, pp. 728~735.
96. R. A. Johns and D. A. Blackburn, “Grain Boundaries and Their Effect on Thermomigration in Pure Lead at Low Diffusion Temperatures”, Thin Solid Films, Vol. 25, No. 2, 1975, pp. 291~300.
97. H. Ye, C. Basaran, and D. Hopkins, “Thermomigration in Pb-Sn Solder Joints under Joule Heating during Electric Current Stressing”, Applied Physics Letters, Vol. 82, No. 7, 2003, pp. 1045~1047.
98. S. H. Chiu, T. L. Shao, C. Chen, D. J. Yao, and C. Y. Hsu, “Infrared Microscopy of Hot Spots Induced by Joule Heating in Flip-chip SnAg Solder Joints under Accelerated Electromigration”, Applied Physics Letters, Vol. 88, No. 2, 2006, pp. 0221101~0221102.
99. H. Ye, C. Basaran and D. C. Hopkins, “Mechanical Degradation of Microelectronics Solder Joints under Current Stressing”, International Journal of Solids and Structures Vol. 40, No. 26, 2003, pp. 7269~7284.
100. A. T. Huang, A. M. Gusak, K. N. Tu, and Y. S. Lai, “Thermomigration in SnPb Composite Flip Chip Solder Joints”, Applied Physics Letters, Vol. 88, No. 14, 2006, pp. 1419111~1419113.
101. A. T. Wu, K. N. Tu, J. R. Lloyd, N. Tamura, B. C. Valek, and C. R. Kao, “Electromigration-induced Microstructure Evolution in Tin Studied by Synchrotron X-ray Microdiffraction”, Applied Physics Letters, Vol. 85, No. 13, 2004, pp. 2490~2492.
102. A. T. Wu, A. M. Gusak, K. N. Tu, and C. R. Kao, “Electromigration-induced Grain Rotation in Anisotropic Conducting Beta Tin”, Applied Physics Letters, Vol. 86, 2005, pp. 241902-1~241902-3.
103. K. N. Tu, “Recent Advances on Electromigration in Very-large-scale-integration of Interconnects”, Journal of Applied Physics, Vol. 94, 2003, pp. 5451~5473.
104. J. W. Nah, F. Ren, K. N. Tu, S. Venk, and G. Gamara, “Electromigration in Pb-free Flip Chip Solder Joints on Flexible Substrates”, Journal of Applied Physics, Vol. 99, 2006, pp. 023520-1~023520-6.
105. H. Gan and K. N. Tu, “Polarity Effect of Electromigration on Kinetics of Intermetallic Compound Formation in Pb-free Solder V-groove Samples”, Journal of Applied Physics, Vol. 97, 2005, pp. 063514-1~063514-10.
106. C. M. Chen and S. W. Chen, “Electromigration Effect upon the Sn/Ag and Sn/Ni Interfacial Reactions at Various Temperatures”, Acta Materialia, Vol. 50, 2002, pp. 2461~2469.
107. C. M. Chen and S. W. Chen, “Electromigration Effect upon the Sn-0.7wt%Cu/Ni and Sn-3.5wt%Ag/Ni Interfacial Reactions”, Journal of Applied Physics, Vol. 90, 2001, pp. 1208~1214.
108. Paul Shewmon, Diffusion in Solids, Warrendale, Pennsylvania, The Minerals, Metals and Materials Society, 1989, p. 224.
109. B. F. Dyson, T. R. Anthony, and D. Turnbull, “Interstitial Diffusion of Copper in Tin”, Journal of Applied Physics, Vol. 38, 1967, pp. 3408.
110. F. H. Huang and H. B. Huntington, “Diffusion of Sb124, Cd109, Sn113, and Zn65 in Tin”, Physical Review B, Vol. 9, 1974, pp. 1479~1488.
111. H. B. Huntington, Diffusion in Solids: Recent Developments, edited by A.S. Nowick, and J.J. Burton, Academic Press, New York, 1975, p. 303.
112. X. F. Zhang, J. D. Guo, and J. K. Shang, “Abnormal Polarity Effect of Electromigration on Intermetallic Compound Formation in Sn-9Zn Solder Interconnect”, Scripta Materialia, Vol. 57, 2007, pp. 513~516.
113. Y. M. Hung and C. M. Chen, “Electromigration of Sn-9Zn Solder”, Journal of Electronic Materials, Vol. 37, No. 6, 2008, pp. 887~893.
114. Z. Mei, A. J. Sunwoo, and J. W. Morris, “Analysis of Low-temperature Intermetallic Growth in Copper-tin Diffusion Couples”, Metallurgical and Materials Transactions A, Vol. 23, 1992, pp. 857~864.
115. B. Chao, S. H. Chae, X. Zhang, K. H. Lu, J. Im, and P. S. Ho, “Investigation of Diffusion and Electromigration Parameters for Cu-Sn Intermetallic Compounds in Pb-free Solders using Simulated Annealing”, Acta Materialia, Vol. 55, 2007, pp. 2805~2814.
116. T. C. Chang, M. C. Wang, and M. H. Hon, “Crystal Growth of the Intermetallic Compounds at the Sn-9Zn-xAg/Cu Interface during Isothermal Aging”, Journal of Crystal Growth, Vol. 252, 2003, pp. 401~412.
117. M. Date, K. N. Tu, T. Shoji, M. Fujiyoshi, and K. Sato, “Interfacial Reactions and Impact Reliability of Sn-Zn Solder Joints on Cu or Electroless Au/Ni(P) Bond-pads”, Journal of Materials Research, Vol. 19, No. 10, 2004, pp. 2887~2896.
118. J. W. Yoon and S. B. Jung, “Interfacial Reactions and Shear Strength on Cu and Electrolytic Au/Ni Metallization with Sn-Zn Solder”, Journal of Materials Research, Vol. 21, 2006, pp. 1590~1599.
119. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys: Second edition, Academic Press, United Kingdom, 2001, p. 46.
120. P. A. Swarthmore, in Powder Diffraction File: Sets 1–8 (International Centre for Diffraction Data, Pennsylvania, 1991), p. 268.
121. P. Pecheur and G. Toussaint, “Anisotropy of the Resistivity of Normal Hexagonal Metals”, Journal of Physics and Chemistry of Solids, Vol. 33, 1972, pp. 2281~2286.
122. C. N. Liao, K. C. Chen, W. W. Wu, and L. J. Chen, “In Situ Transmission Electron Microscope Observations of Electromigration in Copper Lines at Room Temperature”, Applied Physics Letters, Vol. 87, 2005, pp. 141903-1~141903-3.
123. K. C. Chen, C. N. Liao, W. W. Wu, and L. J. Chen, “Direct Observation of Electromigration-induced Surface Atomic Steps in Cu Lines by In Situ Transmission Electron Microscopy”, Applied Physics Letters, Vol. 90, 2007, pp. 203101-1~203101-3.
124. M. Karimi, T. Tomkowski, G. Vidali, and O. Biham, “Diffusion of Cu on Cu Surfaces”, Physical Review B, Vol. 52, 1995, pp. 5364~5374.
125. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys: Second edition, Academic Press, United Kingdom, 2001, p. 279.
126. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys: Second edition, Academic Press, United Kingdom, 2001, p. 179.