| 研究生: |
許雅勛 Syu, Ya-Syun |
|---|---|
| 論文名稱: |
以行為及fMRI研究探討認知地圖與製圖式地圖之空間記憶提取歷程 A behavioral and fMRI study on retrieving spatial memories of cognitive maps and cartographic maps |
| 指導教授: |
林君昱
Lin, Chun-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
社會科學院 - 心理學系 Department of Psychology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 191 |
| 中文關鍵詞: | 海馬迴 、認知地圖 、製圖式地圖 、空間表徵 |
| 外文關鍵詞: | hippocampus, coarse-grained, fine-grained, spatial representation |
| 相關次數: | 點閱:152 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去研究指出海馬迴與空間記憶、探索等功能相關,也發現不同尺寸的空間資訊在海馬迴前後側有表徵差異。但這些發現尚無法確定使用路徑式學習(route-learning)而得的認知地圖(cognitive map),與地圖式學習(map-learning)的製圖式地圖(cartographic map)在提取機制的異同,也缺乏以紙本地圖探討精細(fine-grained)及粗略尺寸(coarse-grained)在海馬迴表徵的差異。故本研究分別以成大校園(認知地圖)及實驗者設計的製圖式地圖上的地標名稱為材料,並使用Hirshhorn等人(2012)的方位判斷派典,依據兩地標對應到東西或南北軸的投影距離,將相對較長的問項分為簡單題、相對較短的問項為困難題,讓參與者回答:哪個地標較偏東/西/南/北邊?,同時假設困難會比簡單題多用到精細的空間表徵來幫助回答。藉此觀察參與者在提取認知及製圖式地圖的神經機制差異,及處理不同距離的題項時,所使用不同精細程度的空間表徵於行為及影像表現的情形。先在預備性研究一、二分別進行認知及製圖式地圖的方位判斷程式,接著才在fMRI實驗讓參與者在掃描儀中同時完成兩部分的方位判斷程式。結果發現:行為表現在簡單題的正確率皆顯著高於困難題,反應時間則顯著短於困難題。影像的部分在成大認知地圖比製圖式地圖多活化左後側海馬迴(left posterior hippocampus),且在成大認知地圖情境下,簡單及困難題都比控制組多活化海馬迴區域,但兩者比較後並未發現困難題比簡單題多活化後側海馬迴;此外,製圖式紙本地圖也有觀察到困難題比簡單題多活化右後側海馬迴(right posterior hippocampus)的區域。
The hippocampus plays an important role in memory and spatial cognition. It acts like an inner GPS in the brain. It has been shown from the fMRI study that fine-grained representations may involve more posterior hippocampus than coarse-grained ones when using materials from real life. However, less has been known about learning spatial knowledge from cartographic map learning. We used behavioral and fMRI studies to examine the differences between retrieving spatial knowledge from an environment learned from experience (NCKU; route learning) and from cartographic map learning (MAP; with a novel map). We found that NCKU showed more activations in scene processing areas than MAP. Difficult spatial questions (supposed to involve more fine-grained spatial processing) also activated more medial temporal regions then easy questions (coarse-grained processing). These results suggest that the conditions may involve some common and some distinct neural processing.
參考文獻
中文文獻
楊雅琪(2011)。早發型阿茲海默氏症患者空間表徵轉換能力受損之研究。未出版之碩士論文,國立成功大學行為醫學研究所。
英文文獻
Barense, M. D., Henson, R. N. A., Lee, A. C. H., & Graham, K. S. (2010). Medial temporal lobe activity during complex discrimination of faces, objects, and scenes: Effects of viewpoint. Hippocampus, 20(3), 389–401. https://doi.org/10.1002/hipo.20641
Baumann, O., & Mattingley, J. B. (2013). Dissociable Representations of EnviroMAPental Size and Complexity in the Human Hippocampus. Journal of Neuroscience, 33(25), 10526–10533. https://doi.org/10.1523/JNEUROSCI.0350-13.2013
Boccia, M., Guariglia, C., Sabatini, U., & Nemmi, F. (2015). Navigating toward a novel enviroMAPent from a route or survey perspective: neural correlates and context-dependent connectivity. Brain Structure and Function, 221(4), 2005–2021. https://doi.org/10.1007/s00429-015-1021-z
Ekstrom, A. D. (2015). Why vision is important to how we navigate. Hippocampus, 25(6), 731–735. https://doi.org/10.1002/hipo.22449
Ekstrom, A. D., Arnold, A. E. G. F., & Iaria, G. (2014). A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective. Frontiers in Human Neuroscience, 8, 803. https://doi.org/10.3389/fnhum.2014.00803
Epstein, R. A., & Vass, L. K. (2014). Neural systems for landmark-based wayfinding in humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1635). https://doi.org/10.1098/rstb.2012.0533
Etchamendy, N., & Bohbot, V. D. (2007). Spontaneous navigational strategies and performance in the virtual town. Hippocampus, 17(8), 595–599. https://doi.org/10.1002/hipo.20303
Evensmoen, H. R., Ladstein, J., Hansen, T. I., Moller, J. A., Witter, M. P., Nadel, L., & Haberg, A. K. (2015). From Details to Large Scale: The Representation of EnviroMAPental Positions Follows a Granularity Gradient Along the Human Hippocampal and Entorhinal Anterior-Posterior Axis. Hippocampus, 25(1), 119–135. https://doi.org/10.1002/hipo.22357
Evensmoen, H. R., Lehn, H., Xu, J., Witter, M. P., Nadel, L., & Haberg, A. K. (2013). The Anterior Hippocampus Supports a Coarse, Global EnviroMAPental Representation and the Posterior Hippocampus Supports Fine-grained, Local EnviroMAPental Representations. Journal of Cognitive Neuroscience, 25(11), 1908–1925. https://doi.org/10.1162/jocn_a_00436
Filimon, F. (2015). Are All Spatial Reference Frames Egocentric? Reinterpreting Evidence for Allocentric, Object-Centered, or World-Centered Reference Frames. Frontiers in Human Neuroscience, 648. https://doi.org/10.3389/fnhum.2015.00648
Hirshhorn, M., Grady, C., Rosenbaum, R. S., Winocur, G., & Moscovitch, M. (2012a). Brain regions involved in the retrieval of spatial and episodic details associated with a familiar enviroMAPent: An fMRI study. Neuropsychologia, 50(13), 3094–3106. https://doi.org/10.1016/j.neuropsychologia.2012.08.008
Hirshhorn, M., Grady, C., Rosenbaum, R. S., Winocur, G., & Moscovitch, M. (2012b). The hippocampus is involved in mental navigation for a recently learned, but not a highly familiar enviroMAPent: A longitudinal fMRI study. Hippocampus, 22(4), 842–852. https://doi.org/10.1002/hipo.20944
Howard, L. R., Javadi, A. H., Yu, Y., Mill, R. D., Morrison, L. C., Knight, R., … Spiers, H. J. (2014). The Hippocampus and Entorhinal Cortex Encode the Path and Euclidean Distances to Goals during Navigation. Current Biology, 24(12), 1331–1340. https://doi.org/10.1016/j.cub.2014.05.001
Howard, L. R., Kumaran, D., Ólafsdóttir, H. F., & Spiers, H. J. (2011). Double Dissociation between Hippocampal and Parahippocampal Responses to Object–Background Context and Scene Novelty. The Journal of Neuroscience, 31(14), 5253–5261. https://doi.org/10.1523/JNEUROSCI.6055-10.2011
Keinath, A. T., Wang, M. E., Wann, E. G., Yuan, R. K., Dudman, J. T., & Muzzio, I. A. (2014). Precise Spatial Coding is Preserved Along the Longitudinal Hippocampal Axis. Hippocampus, 24(12), 1533–1548. https://doi.org/10.1002/hipo.22333
Kjelstrup, K. B., Solstad, T., B回合, V. H., Hafting, T., Leutgeb, S., Witter, M. P., … Moser, M.-B. (2008). Finite Scale of Spatial Representation in the Hippocampus. Science, 321(5885), 140–143. https://doi.org/10.1126/science.1157086
Kondo, Y., Suzuki, M., Mugikura, S., Abe, N., Takahashi, S., Iijima, T., & Fujii, T. (2005). Changes in brain activation associated with use of a memory strategy: a functional MRI study. NeuroImage, 24(4), 1154–1163. https://doi.org/10.1016/j.neuroimage.2004.10.033
Kosslyn, S. M., Pick, H. L., & Fariello, G. R. (1974). Cognitive Maps in Children and Men. Child Development, 45(3), 707–716. https://doi.org/10.2307/1127837
Lerner, B. H. (2005). Last-ditch medical therapy - Revisiting lobotomy. New England Journal of Medicine, 353(2), 119–121. https://doi.org/10.1056/NEJMp048349
Mader, M., Bresges, A., Topal, R., Busse, A., Forsting, M., & Gizewski, E. R. (2009). Simulated car driving in fMRI—Cerebral activation patterns driving an unfamiliar and a familiar route. Neuroscience Letters, 464(3), 222–227. https://doi.org/10.1016/j.neulet.2009.08.056
Mellet, E., Briscogne, S., Tzourio-Mazoyer, N., Ghaëm, O., Petit, L., Zago, L., … Denis, M. (2000). Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. NeuroImage, 12(5), 588–600. https://doi.org/10.1006/nimg.2000.0648
Morgan, L. K., MacEvoy, S. P., Aguirre, G. K., & Epstein, R. A. (2011). Distances between Real-World Locations Are Represented in the Human Hippocampus. The Journal of Neuroscience, 31(4), 1238–1245. https://doi.org/10.1523/JNEUROSCI.4667-10.2011
Morris, R. G. M., Garrud, P., Rawlins, J. N. P., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683. https://doi.org/10.1038/297681a0
Moser, E. I., Kropff, E., & Moser, M.-B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience, 31, 69–89. https://doi.org/10.1146/annurev.neuro.31.061307.090723
Nadel, L., Hoscheidt, S., & Ryan, L. R. (2012). Spatial Cognition and the Hippocampus: The Anterior–Posterior Axis. Journal of Cognitive Neuroscience, 25(1), 22–28. https://doi.org/10.1162/jocn_a_00313
Nielson, D. M., Smith, T. A., Sreekumar, V., Dennis, S., & Sederberg, P. B. (2015). Human hippocampus represents space and time during retrieval of real-world memories. Proceedings of the National Academy of Sciences of the United States of America, 112(35), 11078–11083. https://doi.org/10.1073/pnas.1507104112
O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175. https://doi.org/10.1016/0006-8993(71)90358-1
O’Keefe, John, & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon Press. Retrieved from http://arizona.openrepository.com/arizona/handle/10150/620894
Pai, M.-C., Lee, C.-C., Yang, Y.-C., Lee, Y.-T., Chen, K.-C., Lin, S.-H., … Cheng, P.-J. (2012). Development of a questionnaire on everyday navigational ability to assess topographical disorientation in Alzheimer’s disease. American Journal of Alzheimer’s Disease and Other Dementias, 27(1), 65–72. https://doi.org/10.1177/1533317512436805
Poppenk, J., Evensmoen, H. R., Moscovitch, M., & Nadel, L. (2013). Long-axis specialization of the human hippocampus. Trends in Cognitive Sciences, 17(5), 230–240. https://doi.org/10.1016/j.tics.2013.03.005
Poucet, B., Thinus-Blanc, C., & Muller, R. U. (1994). Place cells in the ventral hippocampus of rats. Neuroreport, 5(16), 2045–2048.
Proulx, M. J., Todorov, O. S., Taylor Aiken, A., & de Sousa, A. A. (2016). Where am I? Who am I? The Relation Between Spatial Cognition, Social Cognition and Individual Differences in the Built EnviroMAPent. Cognitive Science, 64. https://doi.org/10.3389/fpsyg.2016.00064
Ruggiero, G., Ruotolo, F., & Iachini, T. (2012). Egocentric/allocentric and coordinate/categorical haptic encoding in blind people. Cognitive Processing, 13 Suppl 1, S313-317. https://doi.org/10.1007/s10339-012-0504-6
Ryan, L., Lin, C.-Y., Ketcham, K., & Nadel, L. (2010). The role of medial temporal lobe in retrieving spatial and nonspatial relations from episodic and semantic memory. Hippocampus, 20(1), 11–18. https://doi.org/10.1002/hipo.20607
Saj, A., Cojan, Y., Musel, B., Honoré, J., Borel, L., & Vuilleumier, P. (2014). Functional neuro-anatomy of egocentric versus allocentric space representation. Neurophysiologie Clinique/Clinical Neurophysiology, 44(1), 33–40. https://doi.org/10.1016/j.neucli.2013.10.135
Schinazi, V. R., & Epstein, R. A. (2010). Neural correlates of real-world route learning. Neuroimage, 53(2), 725–735. https://doi.org/10.1016/j.neuroimage.2010.06.065
Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2013). Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus, 23(6), 515–528. https://doi.org/10.1002/hipo.22111
Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20(1), 11–21.
Shelton, A. L., & Gabrieli, J. D. E. (2002). Neural Correlates of Encoding Space from Route and Survey Perspectives. The Journal of Neuroscience, 22(7), 2711–2717.
Shelton, A. L., & Gabrieli, J. D. E. (2004). Neural Correlates of Individual Differences in Spatial Learning Strategies. Neuropsychology, 18(3), 442–449. https://doi.org/10.1037/0894-4105.18.3.442
Slone, E., Burles, F., & Iaria, G. (2016). EnviroMAPental layout complexity affects neural activity during navigation in humans. The European Journal of Neuroscience, 43(9), 1146–1155. https://doi.org/10.1111/ejn.13218
Smith, M. L., & Milner, B. (1981). The role of the right hippocampus in the recall of spatial location. Neuropsychologia, 19(6), 781–793. https://doi.org/10.1016/0028-3932(81)90090-7
Spiers, H. J., & Barry, C. (2015). Neural systems supporting navigation. Current Opinion in Behavioral Sciences, 1, 47–55. https://doi.org/10.1016/j.cobeha.2014.08.005
Spiers, H. J., & Maguire, E. A. (2007). A navigational guidance system in the human brain. Hippocampus, 17(8), 618–626. https://doi.org/10.1002/hipo.20298
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189–208. https://doi.org/10.1037/h0061626
Vass, L. K., Copara, M. S., Seyal, M., Shahlaie, K., Farias, S. T., Shen, P. Y., & Ekstrom, A. D. (2016). Oscillations Go the Distance: Low-Frequency Human Hippocampal Oscillations Code Spatial Distance in the Absence of Sensory Cues during Teleportation. Neuron, 89(6), 1180–1186. https://doi.org/10.1016/j.neuron.2016.01.045
Vass, L. K., & Epstein, R. A. (2013). Abstract Representations of Location and Facing Direction in the Human Brain. Journal of Neuroscience, 33(14), 6133–6142. https://doi.org/10.1523/JNEUROSCI.3873-12.2013
Zhang, H., Copara, M., & Ekstrom, A. D. (2012). Differential Recruitment of Brain Networks following Route and Cartographic Map Learning of Spatial EnviroMAPents. PLOS ONE, 7(9), e44886. https://doi.org/10.1371/journal.pone.0044886
Zhang, H., & Ekstrom, A. (2013). Human neural systems underlying rigid and flexible forms of allocentric spatial representation. Human Brain Mapping, 34(5), 1070–1087. https://doi.org/10.1002/hbm.21494
Zhang, H., Zherdeva, K., & Ekstrom, A. D. (2014). Different “routes” to a cognitive map: dissociable forms of spatial knowledge derived from route and cartographic map learning. Memory & Cognition, 42(7), 1106–1117. https://doi.org/10.3758/s13421-014-0418-x