簡易檢索 / 詳目顯示

研究生: 許雅勛
Syu, Ya-Syun
論文名稱: 以行為及fMRI研究探討認知地圖與製圖式地圖之空間記憶提取歷程
A behavioral and fMRI study on retrieving spatial memories of cognitive maps and cartographic maps
指導教授: 林君昱
Lin, Chun-Yu
學位類別: 碩士
Master
系所名稱: 社會科學院 - 心理學系
Department of Psychology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 191
中文關鍵詞: 海馬迴認知地圖製圖式地圖空間表徵
外文關鍵詞: hippocampus, coarse-grained, fine-grained, spatial representation
相關次數: 點閱:152下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去研究指出海馬迴與空間記憶、探索等功能相關,也發現不同尺寸的空間資訊在海馬迴前後側有表徵差異。但這些發現尚無法確定使用路徑式學習(route-learning)而得的認知地圖(cognitive map),與地圖式學習(map-learning)的製圖式地圖(cartographic map)在提取機制的異同,也缺乏以紙本地圖探討精細(fine-grained)及粗略尺寸(coarse-grained)在海馬迴表徵的差異。故本研究分別以成大校園(認知地圖)及實驗者設計的製圖式地圖上的地標名稱為材料,並使用Hirshhorn等人(2012)的方位判斷派典,依據兩地標對應到東西或南北軸的投影距離,將相對較長的問項分為簡單題、相對較短的問項為困難題,讓參與者回答:哪個地標較偏東/西/南/北邊?,同時假設困難會比簡單題多用到精細的空間表徵來幫助回答。藉此觀察參與者在提取認知及製圖式地圖的神經機制差異,及處理不同距離的題項時,所使用不同精細程度的空間表徵於行為及影像表現的情形。先在預備性研究一、二分別進行認知及製圖式地圖的方位判斷程式,接著才在fMRI實驗讓參與者在掃描儀中同時完成兩部分的方位判斷程式。結果發現:行為表現在簡單題的正確率皆顯著高於困難題,反應時間則顯著短於困難題。影像的部分在成大認知地圖比製圖式地圖多活化左後側海馬迴(left posterior hippocampus),且在成大認知地圖情境下,簡單及困難題都比控制組多活化海馬迴區域,但兩者比較後並未發現困難題比簡單題多活化後側海馬迴;此外,製圖式紙本地圖也有觀察到困難題比簡單題多活化右後側海馬迴(right posterior hippocampus)的區域。

    The hippocampus plays an important role in memory and spatial cognition. It acts like an inner GPS in the brain. It has been shown from the fMRI study that fine-grained representations may involve more posterior hippocampus than coarse-grained ones when using materials from real life. However, less has been known about learning spatial knowledge from cartographic map learning. We used behavioral and fMRI studies to examine the differences between retrieving spatial knowledge from an environment learned from experience (NCKU; route learning) and from cartographic map learning (MAP; with a novel map). We found that NCKU showed more activations in scene processing areas than MAP. Difficult spatial questions (supposed to involve more fine-grained spatial processing) also activated more medial temporal regions then easy questions (coarse-grained processing). These results suggest that the conditions may involve some common and some distinct neural processing.

    摘要 I 誌謝 V 圖目錄 XI 表目錄 XIII 一、緒論 1 1-1 研究動機與目的 1 1-2 名詞釋義 3 二、文獻探討 6 2-1海馬迴與空間記憶 6 2-1-1初期腦傷研究 6 2-1-2 海馬迴與空間記憶的關係 7 2-2 空間學習模式 8 2-2-1 路徑式(route)與地圖式學習(map-learning) 8 2-2-2 路徑(route)與地圖式學習(map-learning)的神經機制 9 2-3 空間線索的表徵 11 2-3-1 空間尺寸、粒度(spatial granularity)的表徵 11 2-3-2 海馬迴長軸功能特化 15 2-4 研究目的 17 2-4-1過去研究暨問題 17 2-4-2 研究目標及設計 18 2-4-3 本研究假設 20 三、預備性研究一:成大地標選取 25 3-1 研究方法 25 3-1-1 實驗目標暨設計 25 3-1-2 實驗假設 26 3-2 實驗參與者 27 3-3 實驗刺激與儀器 27 3-3-1 地標填圖作業 27 3-3-2 方位判斷作業 29 3-3-3 生活經驗問卷 32 3-4 實驗程序 32 3-5 實驗結果 33 3-5-1 地標填圖作業 33 3-5-2 方位判斷作業 35 3-6 結果與討論 39 四、預備性研究二:製圖式地圖學習作業 42 4-1 研究方法 42 4-1-1 實驗目標暨設計 42 4-1-2 實驗假設 43 4-2 實驗參與者 44 4-3 實驗刺激與儀器 45 4-3-1 地標填圖作業 45 4-3-2 方位判斷作業 51 4-3-3 生活經驗問卷 53 4-4 實驗程序 54 4-5 實驗結果 57 4-5-1 地標填圖作業 57 4-5-2 方位判斷作業 58 4-5-3 生活經驗問卷 64 4-6 結果與討論 65 五、FMRI研究 68 5-1研究方法 68 5-1-1 實驗目標暨設計 68 5-1-2 實驗假設 70 5-2 實驗參與者 70 5-3 實驗刺激 72 5-3-1 參與者篩選問卷 72 5-3-2 實驗前訓練作業 73 5-3-3 方位判斷作業 74 5-4 實驗儀器 78 5-4-1 磁振造影影像之取得 78 5-4-2 fMRI資料分析軟體 78 5-4-3 磁振造影影像資料分析 79 5-5 實驗程序 82 5-6 實驗結果 85 5-6-1 行為資料分析 85 5-6-2 fMRI影像資料:ROI分析 90 5-6-3 fMRI影像資料-Whole-Brain分析 101 5-7 結果與討論 109 六、綜合討論 112 6-1 研究摘述 112 6-2 研究結果討論 113 6-3 研究限制與未來研究建議 115 參考文獻 117 中文文獻 117 英文文獻 117 附錄 125 附錄1-1:研究參與同意書 125 附錄3-1:預備性研究1-地標清單 127 附錄3-2:預備性研究1-地標配對清單 129 附錄3-3:預備性研究1-方位判斷作業的完整題目 130 附錄3-4:預備性研究1-方位判斷作業程式畫面 131 附錄3-5:預備性研究1-指導語 132 附錄3-6:預備性研究1-生活經驗問卷(GOOGLE版本) 134 附錄4-1:預備性研究2-地標配對清單 136 附錄4-2:預備性研究2-方位判斷作業的完整題目 138 附錄4-3:預備性研究2-指導語 141 附錄4-4:預備性研究2-實驗後訪談 145 附錄4-5:預備性研究2-生活經驗問卷(GOOGLE版本) 146 附錄5-1:FMRI實驗-地標清單 151 附錄5-2:FMRI實驗-地標配對清單 152 附錄5-3:FMRI實驗-成大地點確認問卷 156 附錄5-4:FMRI實驗-生活經驗問卷 160 附錄5-5:FMRI實驗-成大心智影像中心安全檢核表 171 附錄5-6:FMRI實驗-指導語 172 附錄5-7:FMRI實驗-E-PRIME題目 176 附錄5-8:FMRI實驗-成大地標確認 182 附錄5-9:FMRI實驗-地圖記憶實驗後訪談 184 附錄5-10:FMRI實驗-實驗後的策略記錄表 185 附錄5-11:FMRI實驗-MRI實驗記錄表&訪談記錄表 188 附錄5-12:FMRI實驗-材料順序的對抗平衡表(COUNTERBALANCE) 190

    參考文獻
    中文文獻
    楊雅琪(2011)。早發型阿茲海默氏症患者空間表徵轉換能力受損之研究。未出版之碩士論文,國立成功大學行為醫學研究所。
    英文文獻
    Barense, M. D., Henson, R. N. A., Lee, A. C. H., & Graham, K. S. (2010). Medial temporal lobe activity during complex discrimination of faces, objects, and scenes: Effects of viewpoint. Hippocampus, 20(3), 389–401. https://doi.org/10.1002/hipo.20641
    Baumann, O., & Mattingley, J. B. (2013). Dissociable Representations of EnviroMAPental Size and Complexity in the Human Hippocampus. Journal of Neuroscience, 33(25), 10526–10533. https://doi.org/10.1523/JNEUROSCI.0350-13.2013
    Boccia, M., Guariglia, C., Sabatini, U., & Nemmi, F. (2015). Navigating toward a novel enviroMAPent from a route or survey perspective: neural correlates and context-dependent connectivity. Brain Structure and Function, 221(4), 2005–2021. https://doi.org/10.1007/s00429-015-1021-z
    Ekstrom, A. D. (2015). Why vision is important to how we navigate. Hippocampus, 25(6), 731–735. https://doi.org/10.1002/hipo.22449
    Ekstrom, A. D., Arnold, A. E. G. F., & Iaria, G. (2014). A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective. Frontiers in Human Neuroscience, 8, 803. https://doi.org/10.3389/fnhum.2014.00803
    Epstein, R. A., & Vass, L. K. (2014). Neural systems for landmark-based wayfinding in humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1635). https://doi.org/10.1098/rstb.2012.0533
    Etchamendy, N., & Bohbot, V. D. (2007). Spontaneous navigational strategies and performance in the virtual town. Hippocampus, 17(8), 595–599. https://doi.org/10.1002/hipo.20303
    Evensmoen, H. R., Ladstein, J., Hansen, T. I., Moller, J. A., Witter, M. P., Nadel, L., & Haberg, A. K. (2015). From Details to Large Scale: The Representation of EnviroMAPental Positions Follows a Granularity Gradient Along the Human Hippocampal and Entorhinal Anterior-Posterior Axis. Hippocampus, 25(1), 119–135. https://doi.org/10.1002/hipo.22357
    Evensmoen, H. R., Lehn, H., Xu, J., Witter, M. P., Nadel, L., & Haberg, A. K. (2013). The Anterior Hippocampus Supports a Coarse, Global EnviroMAPental Representation and the Posterior Hippocampus Supports Fine-grained, Local EnviroMAPental Representations. Journal of Cognitive Neuroscience, 25(11), 1908–1925. https://doi.org/10.1162/jocn_a_00436
    Filimon, F. (2015). Are All Spatial Reference Frames Egocentric? Reinterpreting Evidence for Allocentric, Object-Centered, or World-Centered Reference Frames. Frontiers in Human Neuroscience, 648. https://doi.org/10.3389/fnhum.2015.00648
    Hirshhorn, M., Grady, C., Rosenbaum, R. S., Winocur, G., & Moscovitch, M. (2012a). Brain regions involved in the retrieval of spatial and episodic details associated with a familiar enviroMAPent: An fMRI study. Neuropsychologia, 50(13), 3094–3106. https://doi.org/10.1016/j.neuropsychologia.2012.08.008
    Hirshhorn, M., Grady, C., Rosenbaum, R. S., Winocur, G., & Moscovitch, M. (2012b). The hippocampus is involved in mental navigation for a recently learned, but not a highly familiar enviroMAPent: A longitudinal fMRI study. Hippocampus, 22(4), 842–852. https://doi.org/10.1002/hipo.20944
    Howard, L. R., Javadi, A. H., Yu, Y., Mill, R. D., Morrison, L. C., Knight, R., … Spiers, H. J. (2014). The Hippocampus and Entorhinal Cortex Encode the Path and Euclidean Distances to Goals during Navigation. Current Biology, 24(12), 1331–1340. https://doi.org/10.1016/j.cub.2014.05.001
    Howard, L. R., Kumaran, D., Ólafsdóttir, H. F., & Spiers, H. J. (2011). Double Dissociation between Hippocampal and Parahippocampal Responses to Object–Background Context and Scene Novelty. The Journal of Neuroscience, 31(14), 5253–5261. https://doi.org/10.1523/JNEUROSCI.6055-10.2011
    Keinath, A. T., Wang, M. E., Wann, E. G., Yuan, R. K., Dudman, J. T., & Muzzio, I. A. (2014). Precise Spatial Coding is Preserved Along the Longitudinal Hippocampal Axis. Hippocampus, 24(12), 1533–1548. https://doi.org/10.1002/hipo.22333
    Kjelstrup, K. B., Solstad, T., B回合, V. H., Hafting, T., Leutgeb, S., Witter, M. P., … Moser, M.-B. (2008). Finite Scale of Spatial Representation in the Hippocampus. Science, 321(5885), 140–143. https://doi.org/10.1126/science.1157086
    Kondo, Y., Suzuki, M., Mugikura, S., Abe, N., Takahashi, S., Iijima, T., & Fujii, T. (2005). Changes in brain activation associated with use of a memory strategy: a functional MRI study. NeuroImage, 24(4), 1154–1163. https://doi.org/10.1016/j.neuroimage.2004.10.033
    Kosslyn, S. M., Pick, H. L., & Fariello, G. R. (1974). Cognitive Maps in Children and Men. Child Development, 45(3), 707–716. https://doi.org/10.2307/1127837
    Lerner, B. H. (2005). Last-ditch medical therapy - Revisiting lobotomy. New England Journal of Medicine, 353(2), 119–121. https://doi.org/10.1056/NEJMp048349
    Mader, M., Bresges, A., Topal, R., Busse, A., Forsting, M., & Gizewski, E. R. (2009). Simulated car driving in fMRI—Cerebral activation patterns driving an unfamiliar and a familiar route. Neuroscience Letters, 464(3), 222–227. https://doi.org/10.1016/j.neulet.2009.08.056
    Mellet, E., Briscogne, S., Tzourio-Mazoyer, N., Ghaëm, O., Petit, L., Zago, L., … Denis, M. (2000). Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. NeuroImage, 12(5), 588–600. https://doi.org/10.1006/nimg.2000.0648
    Morgan, L. K., MacEvoy, S. P., Aguirre, G. K., & Epstein, R. A. (2011). Distances between Real-World Locations Are Represented in the Human Hippocampus. The Journal of Neuroscience, 31(4), 1238–1245. https://doi.org/10.1523/JNEUROSCI.4667-10.2011
    Morris, R. G. M., Garrud, P., Rawlins, J. N. P., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683. https://doi.org/10.1038/297681a0
    Moser, E. I., Kropff, E., & Moser, M.-B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience, 31, 69–89. https://doi.org/10.1146/annurev.neuro.31.061307.090723
    Nadel, L., Hoscheidt, S., & Ryan, L. R. (2012). Spatial Cognition and the Hippocampus: The Anterior–Posterior Axis. Journal of Cognitive Neuroscience, 25(1), 22–28. https://doi.org/10.1162/jocn_a_00313
    Nielson, D. M., Smith, T. A., Sreekumar, V., Dennis, S., & Sederberg, P. B. (2015). Human hippocampus represents space and time during retrieval of real-world memories. Proceedings of the National Academy of Sciences of the United States of America, 112(35), 11078–11083. https://doi.org/10.1073/pnas.1507104112
    O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175. https://doi.org/10.1016/0006-8993(71)90358-1
    O’Keefe, John, & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon Press. Retrieved from http://arizona.openrepository.com/arizona/handle/10150/620894
    Pai, M.-C., Lee, C.-C., Yang, Y.-C., Lee, Y.-T., Chen, K.-C., Lin, S.-H., … Cheng, P.-J. (2012). Development of a questionnaire on everyday navigational ability to assess topographical disorientation in Alzheimer’s disease. American Journal of Alzheimer’s Disease and Other Dementias, 27(1), 65–72. https://doi.org/10.1177/1533317512436805
    Poppenk, J., Evensmoen, H. R., Moscovitch, M., & Nadel, L. (2013). Long-axis specialization of the human hippocampus. Trends in Cognitive Sciences, 17(5), 230–240. https://doi.org/10.1016/j.tics.2013.03.005
    Poucet, B., Thinus-Blanc, C., & Muller, R. U. (1994). Place cells in the ventral hippocampus of rats. Neuroreport, 5(16), 2045–2048.
    Proulx, M. J., Todorov, O. S., Taylor Aiken, A., & de Sousa, A. A. (2016). Where am I? Who am I? The Relation Between Spatial Cognition, Social Cognition and Individual Differences in the Built EnviroMAPent. Cognitive Science, 64. https://doi.org/10.3389/fpsyg.2016.00064
    Ruggiero, G., Ruotolo, F., & Iachini, T. (2012). Egocentric/allocentric and coordinate/categorical haptic encoding in blind people. Cognitive Processing, 13 Suppl 1, S313-317. https://doi.org/10.1007/s10339-012-0504-6
    Ryan, L., Lin, C.-Y., Ketcham, K., & Nadel, L. (2010). The role of medial temporal lobe in retrieving spatial and nonspatial relations from episodic and semantic memory. Hippocampus, 20(1), 11–18. https://doi.org/10.1002/hipo.20607
    Saj, A., Cojan, Y., Musel, B., Honoré, J., Borel, L., & Vuilleumier, P. (2014). Functional neuro-anatomy of egocentric versus allocentric space representation. Neurophysiologie Clinique/Clinical Neurophysiology, 44(1), 33–40. https://doi.org/10.1016/j.neucli.2013.10.135
    Schinazi, V. R., & Epstein, R. A. (2010). Neural correlates of real-world route learning. Neuroimage, 53(2), 725–735. https://doi.org/10.1016/j.neuroimage.2010.06.065
    Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2013). Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus, 23(6), 515–528. https://doi.org/10.1002/hipo.22111
    Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20(1), 11–21.
    Shelton, A. L., & Gabrieli, J. D. E. (2002). Neural Correlates of Encoding Space from Route and Survey Perspectives. The Journal of Neuroscience, 22(7), 2711–2717.
    Shelton, A. L., & Gabrieli, J. D. E. (2004). Neural Correlates of Individual Differences in Spatial Learning Strategies. Neuropsychology, 18(3), 442–449. https://doi.org/10.1037/0894-4105.18.3.442
    Slone, E., Burles, F., & Iaria, G. (2016). EnviroMAPental layout complexity affects neural activity during navigation in humans. The European Journal of Neuroscience, 43(9), 1146–1155. https://doi.org/10.1111/ejn.13218
    Smith, M. L., & Milner, B. (1981). The role of the right hippocampus in the recall of spatial location. Neuropsychologia, 19(6), 781–793. https://doi.org/10.1016/0028-3932(81)90090-7
    Spiers, H. J., & Barry, C. (2015). Neural systems supporting navigation. Current Opinion in Behavioral Sciences, 1, 47–55. https://doi.org/10.1016/j.cobeha.2014.08.005
    Spiers, H. J., & Maguire, E. A. (2007). A navigational guidance system in the human brain. Hippocampus, 17(8), 618–626. https://doi.org/10.1002/hipo.20298
    Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189–208. https://doi.org/10.1037/h0061626
    Vass, L. K., Copara, M. S., Seyal, M., Shahlaie, K., Farias, S. T., Shen, P. Y., & Ekstrom, A. D. (2016). Oscillations Go the Distance: Low-Frequency Human Hippocampal Oscillations Code Spatial Distance in the Absence of Sensory Cues during Teleportation. Neuron, 89(6), 1180–1186. https://doi.org/10.1016/j.neuron.2016.01.045
    Vass, L. K., & Epstein, R. A. (2013). Abstract Representations of Location and Facing Direction in the Human Brain. Journal of Neuroscience, 33(14), 6133–6142. https://doi.org/10.1523/JNEUROSCI.3873-12.2013
    Zhang, H., Copara, M., & Ekstrom, A. D. (2012). Differential Recruitment of Brain Networks following Route and Cartographic Map Learning of Spatial EnviroMAPents. PLOS ONE, 7(9), e44886. https://doi.org/10.1371/journal.pone.0044886
    Zhang, H., & Ekstrom, A. (2013). Human neural systems underlying rigid and flexible forms of allocentric spatial representation. Human Brain Mapping, 34(5), 1070–1087. https://doi.org/10.1002/hbm.21494
    Zhang, H., Zherdeva, K., & Ekstrom, A. D. (2014). Different “routes” to a cognitive map: dissociable forms of spatial knowledge derived from route and cartographic map learning. Memory & Cognition, 42(7), 1106–1117. https://doi.org/10.3758/s13421-014-0418-x

    下載圖示 校內:2022-02-15公開
    校外:2022-02-15公開
    QR CODE