簡易檢索 / 詳目顯示

研究生: 陳群翰
Chen, Chun-Han
論文名稱: 基於準絕熱逆向工程之無線能量傳輸
Quasiadiabatic Inverse Engineering based Wireless Power Transfer
指導教授: 曾碩彥
Tseng, Shuo-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 42
中文關鍵詞: 量子態無線能量傳輸絕熱捷徑
外文關鍵詞: quantum state, wireless power transfer, shortcut to adiabaticity
相關次數: 點閱:50下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 絕熱捷徑的方式可以使系統超出絕熱演變的限制,本論文將準絕熱逆向工程的方法用在兩個電路中進行無線能量傳輸,利用此方法可以使得系統達到高傳輸效率且穩定的目的。當系統滿足準絕熱條件的情況下,在無線能量傳輸的過程中,對系統的參數有良好的容忍度,也就是說,系統不容易因為系統誤差或外在環境的其他因素而產生影響。

    Shortcut to adiabaticity can take the system evolution beyond the adiabatic limits. Here we use the quasiadiabatic inverse engineering in wireless power transfer between two coils. With this method, we can make the system achieving the goals of high efficiency and robust. When the system satisfies the quasiadiabatic conditions, it has good robustness during the wireless power transfer. In other words, the system will not easily be affected by the system errors or the other factors of the external environment.

    中英文摘要 i 誌謝 x 目錄 xi 圖目錄 xiii 第一章 介紹 1 1.1 研究動機 1 1.2 介紹 2 1.3 論文架構 3 第二章 理論分析 4 2.1 量子力學中的二能階系統 4 2.2 二能階系統中的絕熱躍遷 7 2.3 二能階系統中反向工程絕熱捷徑 8 2.4 準絕熱逆向工程 10 2.5 量子檢測 13 2.6 兩個相互作用線圈的模態偶合理論 16 第三章 模擬結果與討論 20 3.1 參數結果 20 3.2 能量隨時間的演變 26 3.3 系統誤差的容忍度 31 第四章 結論 39 參考文獻 40

    [1] K. Bergmann, H. Theuer, B. Shore, Coherent population transfer among quantum states of atoms and molecules, Reviews of Modern Physics, 70 (1998) 1003.
    [2] N.V. Vitanov, T. Halfmann, B.W. Shore, K. Bergmann, Laser-induced population transfer by adiabatic passage techniques, Annual review of physical chemistry, 52 (2001) 763-809.
    [3] P. Král, I. Thanopulos, M. Shapiro, Colloquium: Coherently controlled adiabatic passage, Reviews of modern physics, 79 (2007) 53.
    [4] M. Saffman, T.G. Walker, K. Mølmer, Quantum information with Rydberg atoms, Reviews of Modern Physics, 82 (2010) 2313.
    [5] D. Daems, S. Guérin, N. Cerf, Quantum search by parallel eigenvalue adiabatic passage, Physical Review A, 78 (2008) 042322.
    [6] S. Masuda, K. Nakamura, Fast-forward problem in quantum mechanics, Physical Review A, 78 (2008) 062108.
    [7] S. Masuda, K. Nakamura, Fast-forward of adiabatic dynamics in quantum mechanics, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 2009, pp. rspa20090446.
    [8] E. Torrontegui, S. Martínez-Garaot, A. Ruschhaupt, J. Muga, Shortcuts to adiabaticity: Fast-forward approach, Physical Review A, 86 (2012) 013601.
    [9] E. Torrontegui, S. Martínez-Garaot, M. Modugno, X. Chen, J. Muga, Engineering fast and stable splitting of matter waves, Physical Review A, 87 (2013) 033630.
    [10] A. Khujakulov, K. Nakamura, Scheme for accelerating quantum tunneling dynamics, Physical Review A, 93 (2016) 022101.
    [11] G. Della Valle, G. Perozziello, S. Longhi, Shortcut to adiabaticity in full-wave optics for ultra-compact waveguide junctions, Journal of Optics, 18 (2016) 09LT03.
    [12] X. Chen, A. Ruschhaupt, S. Schmidt, A. Del Campo, D. Guéry-Odelin, J.G. Muga, Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity, Physical review letters, 104 (2010) 063002.
    [13] A. Ruschhaupt, X. Chen, D. Alonso, J. Muga, Optimally robust shortcuts to population inversion in two-level quantum systems, New Journal of Physics, 14 (2012) 093040.
    [14] X.-J. Lu, X. Chen, A. Ruschhaupt, D. Alonso, S. Guérin, J. Muga, Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors, Physical Review A, 88 (2013) 033406.
    [15] N.V. Vitanov, B.W. Shore, Designer evolution of quantum systems by inverse engineering, Journal of Physics B: Atomic, Molecular and Optical Physics, 48 (2015) 174008.
    [16] S.-Y. Tseng, Robust coupled-waveguide devices using shortcuts to adiabaticity, Optics letters, 39 (2014) 6600-6603.
    [17] S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, X. Chen, Short and robust directional couplers designed by shortcuts to adiabaticity, Optics express, 22 (2014) 18849-18859.
    [18] X. Chen, E. Torrontegui, J. Muga, Lewis-Riesenfeld invariants and transitionless quantum driving, Physical Review A, 83 (2011) 062116.
    [19] K. Paul, A.K. Sarma, Efficient shortcut techniques in evanescently coupled waveguides, in: Journal of Physics: Conference Series, IOP Publishing, 2016, pp. 012056.
    [20] Ho, Cheng-Pu, and Shuo-Yen Tseng. "Optimization of adiabaticity in coupled-waveguide devices using shortcuts to adiabaticity." Optics letters 40.21 (2015): 4831-4834.
    [21] Longhi, Stefano. "Quantum‐optical analogies using photonic structures." Laser & Photonics Reviews 3.3 (2009): 243-261.
    [22] Martínez-Garaot, S., et al. "Fast quasiadiabatic dynamics." Physical Review A 92.4 (2015): 043406.
    [23] Liu, Yen-Huang, and Shuo-Yen Tseng. "Robust coherent superposition of states using quasiadiabatic inverse engineering." Journal of Physics B: Atomic, Molecular and Optical Physics 50.20 (2017): 205501.
    [24] Assawaworrarit, Sid, Xiaofang Yu, and Shanhui Fan. "Robust wireless power transfer using a nonlinear parity–time-symmetric circuit." Nature 546.7658 (2017): 387.
    [25] Paul, Koushik, and oAmarendra K. Sarma. "Transitionless quantum driving based wireless power transfer." arXiv preprint arXiv:1706.03925 (2017)
    [26] Rangelov, A. A., et al. "Wireless adiabatic power transfer." Annals of Physics 326.3 (2011): 626-633.
    [27] Kurs, Andre, et al. "Wireless power transfer via strongly coupled magnetic resonances." science 317.5834 (2007): 83-86.
    [28] Haus, Hermann A. Waves and fields in optoelectronics. Prentice-Hall,, 1984.
    [29] Paul, Koushik, and Amarendra K. Sarma. "Shortcut to adiabatic passage in a waveguide coupler with a complex-hyperbolic-secant scheme." Physical Review A 91.5 (2015): 053406.
    [30] Dupont-Nivet, Matthieu, et al. "Microwave-stimulated Raman adiabatic passage in a Bose-Einstein condensate on an atom chip." Physical Review A 91.5 (2015): 053420.

    下載圖示 校內:2023-07-01公開
    校外:2023-07-01公開
    QR CODE