| 研究生: |
蔣守皓 Jiang, Shou-Hao |
|---|---|
| 論文名稱: |
選擇性雷射熔融法以多重軌跡掃描不鏽鋼316L金屬粉末之熔池數值分析 Numerical Analysis on Molten Pool of Stainless Steel 316L Metal Powder by Multi-track Scanning in Selective Laser Melting |
| 指導教授: |
溫昌達
Wen, Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 選擇性雷射熔融 、多重軌跡掃描 、馬蘭戈尼效應 、溫度梯度 、基板預熱 |
| 外文關鍵詞: | Selective Laser Melting, Multi-track scanning, Marangoni effect, Temperature gradient, Substrate preheating |
| 相關次數: | 點閱:167 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要利用ANSYS Fluent建立三維暫態數值模型,模擬選擇性雷射熔融法(Selective Laser Melting, SLM)以多重軌跡掃描(Multi-track)不鏽鋼316L粉末,考慮馬蘭戈尼效應,比較不同雷射功率、掃描速率下對粉末溫度及熔池尺寸之影響,並根據能量利用性與製程時間定義熔融效益參數進行雷射參數篩選,以探討改變掃描間距及掃描方式的影響,最後再針對基板與粉末預熱對溫度梯度、冷卻速率作進一步的分析。根據模擬結果顯示,當掃描速率640mm/s下,馬蘭戈尼效應對粉末溫度的影響會隨著雷射功率的增加而明顯變大。而固定雷射功率150W時掃描速率愈小,馬蘭戈尼效應對熔池影響會愈劇烈,造成熔池發展較為深、窄,故SLM使用此參數時應不可忽略此效應的影響。而透過參數篩選雷射功率200W,掃描速率800mm/s為粉末熔融效益最佳的參數,由此探討不同掃描間距發現,軌跡重疊率超過50%時,會使雷射作用區域的溫度梯度過大,而易造成熱應力集中,對於零件製造相當不利,相較下軌跡重疊率30%時溫度梯度較低,其熔池也具有良好的結合性。基板預熱能有利於降低溫度梯度及冷卻速率,其降低幅度會隨著預熱溫度的增加而變大,但為了避免材料過度蒸發,故此預熱溫度控制為700K內較佳。而粉末預熱由於雷射加工時粉末原先預熱的熱量已被大量散失,故造成其對溫度梯度、冷卻速率以及熔池尺寸皆無明顯改變,也無法有效改善零件品質。
In this study, a numerical model is established to investigate the molten pool of stainless steel 316L metal powder by multi-track scanning in Selective Laser Melting (SLM). The results show that the influence of Marangoni effect on the temperature field becomes greater with increasing laser power at scanning speed 640mm/s. When laser power maintains 150W, the decrease of scanning speed makes the shape of molten pool much deeper and narrower. Based on the results, it is inappropriate to neglect Marangoni effect during SLM simulation with these laser parameters. According to parameters analysis with energy utilization and manufacturing time, laser power 200W and scanning speed 800mm/s are more suitable parameters for melting effectiveness of powder. Through the analysis of hatch spacing which is found, if the overlapping rate exceeds 50%, it makes temperature gradient too large and is easy to cause thermal stress concentration, which is unfavorable for the manufacturing parts. Compared to the overlapping rate 30%, the temperature gradient is lower and molten pools show good bonding. We have also researched the implementation of two preheating methods to improve SLM process. Substrate preheating can help to have the lower temperature gradient and cooling rate. To avoid causing excessive the evaporation of material, it is better that the preheating temperature is controlled under 700K. Powder preheating shows no significant change in reducing the temperature gradient and the cooling rate. Therefore, it couldn’t improve the quality of the parts effectively.
1.Elveflow, “Microfluidic 3D printer : selective laser melting,” elveflow.com.
2.K. Kempen, L. Thijs, B. Vrancken, S. Buls, J. Van Humbeeck, and J.P. Kruth, “Lowering thermal gradients in Selective Laser melting by pre-heating the baseplate,” Solid Freeform Fabrication Symposium Proceedings, 2013.
3.I. Yadroitsev, “Selective laser melting:direct manufacturing of 3D-objects by selective laser melting of metal powders,” LAP Lambert Academic Publishing, 2009.
4.M. Mani, B. Lane, A. Donmez, S. Feng, S. Moylan, and R. Fesperman, “Measurement science needs for real-time control of additive manufacturing powder bed fusion processes,” National Institute of Standards and Technology, NISTIR-8036, 2015.
5.A.B. Spierings and G. Levy, “Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades,” Solid Freeform Fabrication Symposium Proceedings, pp. 342-353, 2009.
6.J. Zhou, Y. Zhang, and J.K. Chen, “Numerical simulation of random packing of spherical particles for powder-based additive manufacturing,” Journal of Manufacturing Science and Engineering, Vol. 131, 2009.
7.M. Rombouts, L. Froyen, A.V. Gusarov, E.H. Bentefour, and C. Glorieux, “Light extinction in metallic powder beds: correlation with powder structure,” Journal of Applied Physics, Vol. 98, 2005.
8.F. Thummler and R. Oberacker, “An introduction to powder metallurgy,” Oxford Science Publications, 1993.
9.P.D. Lee, P.N. Quested, and M. Mclean, “Modelling of marangoni effects in electron beam melting,” Philosophical Transactions of the Royal Society A, Vol. 356, pp. 1027-1044, 1998.
10.G. Tsotrid, H. Rother, and E.D. Hondros, “Marangoni flow and the shapes of laser-melted pools,” Naturwissenschaften Vol. 76, pp. 216-218, 1989.
11.L. Han, F.W. Liou, and S. Musti, “Thermal behavior and geometry model of melt pool in laser material process,” Journal of Heat Transfer, Vol. 127, pp.1005-1014, 2005.
12.L.X. Yang, X.F. Peng, and B.X. Wang, “Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing,” Internationa1 Journa1 of Heat and Mass Transfer, Vol. 44, Issue 23, pp. 4465-4473, 2001.
13.K. Antony and N. Arivazhagan, “Studies on energy penetration and Marangoni effect during laser melting process,” Journal of Engineering Science and Technology, Vol. 10, No. 4, pp.509-525, 2015.
14.Y. Li and D. Gu, “Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder,” Materials and Design, Vol. 63, pp.856-867, 2014.
15.K. Antony, N. Arivazhagan, and K. Senthilkumaran, “Numerical and experimental investigations on laser melting of stainless steel 316L metal powders,” Journal of Manufacturing Processes, Vol. 16, pp. 345-355, 2014.
16.A. Foroozmehr, M. Badrossamay, E. Foroozmehr, and S. Golabi, “Finite Element Simulation of Selective Laser Melting process considering optical penetration depth of laser in powder bed,” Materials and Design, Vol. 89, pp. 255-263, 2016.
17.Y. Huang, L.J. Yang, X.Z. Du, and Y.P. Yang, “Finite element analysis of thermal behavior of metal powder during selective laser melting,” Internationa1 Journa1 of Thermal Science, Vol. 104, pp. 146-157, 2016.
18.X. Dinga, L. Wanga, and S. Wanga, “Comparison study of numerical analysis for heat transfer and fluid flow under two different laser scan pattern during selective laser melting,” Optik, Vol. 127, pp. 10898-10907, 2016.
19.D. Wang, Y. Yang, X. Su, and Y. Chen, “Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM,” The International Journal of Advanced Manufacturing Technology, Vol. 58, Issue 9-12, pp 1189-1199, 2012.
20.E. Yasa, J. Deckers, and J.P. Kruth, “The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts,” Rapid Prototyping Journal, Vol. 17, pp. 312-327, 2011.
21.C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing1, “Review of selective laser melting: Materials and applications,” Applied Physics Reviews, Vol. 2, Issue 4, 2015.
22.R. Klein, “Laser welding of plastics,” Wiley-VCH, 2011.
23.楊隆昌, “雷射發展的趨勢與應用,” September, 2013.
24.劉國基、張百齊, “Nd-YAG雷射的加工應用,” 遠東學報, Vol.19, 2001.
25.“Gaussian beam optics,” marketplace.idexop.com, A157-A172, August, 1997.
26.S. Louhenkilpi and F. Imre, “A lézersugnyagtudományifolyamatszimuláció - Hőkezelésmodellezése,” 2011.
27.許阿娟, 朱嘉雯, 林桂芬, 陳志隆,“光學系統設計進階篇-第九章 高斯光束,”fourth version, 2002版.
28.B.V. L’vov, “Thermal decomposition of solids and melts: new thermochemical approcach to the mechanism, kinetics and methodology,” Springer, Vol.7, pp.35-38, 2007.
29.ANSYS, “Ansys Fluent. 15.0 Theory Guide,” ANSYS Inc., 2013.
30.V.R. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” International Journal of Heat and Mass Transfer, Vol.30, pp.1709-1719, 1987.
31.Z. Zhang, “Modeling of Al evaporation and marangoni flow in electron beam button melting of Ti-6Al-4V.” Master’s Thesis, The University of British Columbia, Vancouver, 2013.
32.J.C. Chen and Y.C. Huang, “Thermocapillary flows of surface melting due to a moving heat flux,” International Journal of Heat and Mass Transfer, Vol.34, pp.663-671, 1991.
33.S. Patankar, “Numerical Heat Transfer and Fluid Flow,” Hemisphere Series on Computational Methods in Mechanics and Thermal Science, 1980.
34.Y.P. Lei, H. Murakawa, Y. W. Shi, and X.Y. Li, “Numerical analysis of the competitive influence of marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting,” Computational Materials Science, Vol.21, pp.276-290, 2001.
35.K.C. Mills, “Recommended values of thermophysical properties for selected commercial alloy,” Woodhead Publishing, 2002.
36.T.C. Chawla, D.L. Graff, R.C. Borg, G.L. Bordner, D.P. Weber, and D. Miller, “Thermophysical properties of mixed oxide fuel and stainless steel type 316 for use in transition phase analysis,” Nuclear Engineering and Design, Vol.67, pp.57-74, 1981.
37.J. Yin, H. Zhu, L. Ke, W. Lei, C. Dai, and D. Zuo, “Simulation of temperature distribution in single metallic powder layer for laser micro-sintering,” Computational Materials Science, Vol. 53, pp. 333-339, 2012.
38.A. Hussein, H. Liang, C. Yan, and R. Everson, “Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting,” Materials and Design, Vol. 52, pp. 638-647, 2013.
39.ANSYS, “ANSYS Fluent. 15.0 UDF Manual,” ANSYS Inc., 2013.
40.T.C. Chawla, D.L. Graff, R.C. Borg, G.L. Bordner, D.P. Weber, and D. Miller, “Thermophysical properties of mixed oxide fuel and stainless steel type 316 for use in transition phase analysis,” Nuclear Engineering and Design, Vol.67, pp.57-74, 1981.