| 研究生: |
楊舒涵 Yang, Shu-Han |
|---|---|
| 論文名稱: |
成長核殼式氮化鎵/氮化銦鎵奈米柱於發光二極體元件之應用 Growth of Core-Shell Gallium Nitride/ Indium Gallium Nitride Nanorods for Light-Emitting Diode Applications |
| 指導教授: |
陳進成
Chen, Chin-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 電漿輔助化學氣相沉積 、氮化鎵 、氮化銦鎵 、氮化鋁鎵 、奈米柱 、核殼式結構 、p-n接面 、單一量子井 、發光二極體 、電致發光 |
| 外文關鍵詞: | plasma-enhanced chemical vapor deposition, gallium nitride, Indium Gallium Nitride, Aluminium Gallium Nitride, nanorods, core-shell structure, p-n junction, single-quantum-well, light-emitting diodes, electroluminescence |
| 相關次數: | 點閱:103 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於氮化鎵具有極佳之光電材料特性,已廣泛應用於發光二極體、雷射二極體、太陽能電池以及高功率電晶體。一維奈米結構具有高深寬比與高比表面積之特性,能改善氮化鎵晶體與基板之間不匹配性,本研究採用自行開發之爐管型電漿輔助化學氣相沉積設備成長一維氮化鎵奈米柱,來製備具高發光效率且低成本之發光二極體元件。然而一維氮化鎵奈米柱具高比表面積導致高表面缺陷及影響發光效率。本研究以核殼式結構成長氮化鎵奈米柱,並在p-n接面中成長氮化銦鎵,作為主動層以增加發光效率及改善前述問題。
本研究成功地在p+ Si(100)基板上,成長出垂直於基板表面之高品質氮化鎵奈米柱,藉由調控氮化鎂之載流氣體流量,觀察光致螢光光譜之訊號以控制p型氮化鎵之摻雜濃度及微調晶體品質。並藉由控制氮電漿功率及降低反應壓力在p型氮化鎵奈米柱上成長出n型氮化鎵核殼式結構。將此氮化鎵奈米柱製成發光二極體,其電流-電壓圖顯示出整流特性,證實有p-n接面之存在,在電流密度為700mA/ mm2至3000 mA/ mm2有電致發光現象,其顏色為紫光,但量測燒毀後其二極體特性消失。
為改善在高驅動電壓與電流下才能電致發光情形,本研究進一步在p-n接面中成長氮化銦鎵,以形成量子井侷限電子與電洞在此層,作為主動層增加電子與電洞之復合機率。同時為避免在體積較小之單層量子井有載子溢流的情形,使載子脫離主動層,因此成長氮化鋁鎵作為電子阻擋層,製備了異質p-n接面氮化鎵奈米柱元件。由電流-電壓曲線證實有p-n接面存在。但可能因有漏電流之現象,串聯電阻過大,及異質p-n接面之缺陷較多而造成非輻射性復合,未能觀測到有電致發光之現象。
Due to the significant optoelectronic property, Gallium nitride (GaN) is used for light emitting diodes (LEDs). In addition, 1-D nano-structure has the advantage of high aspect-ratio and high specific surface area, leading to improving the mismatch between GaN and the substrate. We fabricated GaN nano-rods for LED devices employing the self-developed PECVD system. In the study, the surface defect was lowered by fabricating the nano-rods with core-shell structure, and the recombination efficiency was enhanced by growing Indium Gallium Nitride (InGaN) as the active layer.
The samples with p-n junction were packed into devices; its rectifying I-V curves confirmed the existence of p-n junction. Once the current density reached from 700mA/mm2 to 3000mA/mm2 , violet electroluminescence is observed. To solve the higher turn-on voltage and current, a layer of InGaN was grown between the p-n junction to form the quantum well. In addition, a layer of Aluminium Gallium Nitride (AlGaN) was grown as electron-blocking layer. The samples with single-quantum-well were made into devices. The rectifying I-V curves confirmed the existence of p-n junction, but the electroluminescence phenomena was not observed.
1. http://www.eia.gov/tools/faqs/faq.cfm?id=99&t=3
2. http://www1.eere.energy.gov/bulidings/ssl/sslbasics_whyssl.html U. S. Department of Energy(2011).
3. http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/energysavingsforecast14.pdf.
4. Kikuchi, A., et al. Growth and characterization of InGaN/GaN nanocolumn LED. in Proc. SPIE. 2006.
5. https://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/
6. Nakamura, S., S. Pearton, and G. Fasol, The blue laser diode: the complete story. 2013: Springer Science & Business Media.
7. Porowski, S., Growth and properties of single crystalline GaN substrates and homoepitaxial layers. Materials Science and Engineering: B, 1997. 44(1-3): p. 407-413.
8. http://www.intechopen.com/books/nanowires-fundamental-research/gan-nanowires-fabricated-by-magnetron-sputtering-deposition. Feng Shi(2011), GaN Nanowires Fabricated by Magnetron Sputtering Deposition.
9. Levinshtein, M.E., S.L. Rumyantsev, and M.S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. 2001: John Wiley & Sons.
10. Florescu, D., et al., Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy. Applied Physics Letters, 2000. 77(10): p. 1464-1466.
11. Nakamura, S., GaN growth using GaN buffer layer. Japanese Journal of Applied Physics, 1991. 30(10A): p. L1705.
12. Kucheyev, S., et al., Nanoindentation of epitaxial GaN films. Applied Physics Letters, 2000. 77(21): p. 3373-3375.
13. Morkoc, H., Nitride semiconductors and devices. Vol. 32. 2013: Springer Science & Business Media.
14. Calarco, R., et al., Size-dependent photoconductivity in MBE-grown GaN− nanowires. Nano letters, 2005. 5(5): p. 981-984.
15. Sanford, N.A., et al., Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 2010. 107(3): p. 034318.
16. 李訓廷, 成長高品質低密度之n形氮化鎵微米柱用於光電元件, 國立成功大學化工系博士論文, 民國103年.
17. Li, D., et al., Photoluminescence study of Si-doped a-plane GaN grown by MOVPE. Journal of Crystal Growth, 2009. 311(10): p. 2906-2909.
18. Huang, Y., et al., Gallium nitride nanowire nanodevices. Nano Letters, 2002. 2(2): p. 101-104.
19. Monroy, E., et al., Modification of GaN (0001) growth kinetics by Mg doping. Applied physics letters, 2004. 84(14): p. 2554-2556.
20. Amano, H., et al., P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Japanese Journal of Applied Physics, 1989. 28(12A): p. L2112.
21. Nakamura, S., et al., Hole compensation mechanism of p-type GaN films. Japanese Journal of Applied Physics, 1992. 31(5R): p. 1258.
22. Cimpoiasu, E., et al., The effect of Mg doping on GaN nanowires. Nanotechnology, 2006. 17(23): p. 5735.
23. Cheng, G., et al., Current rectification in a single GaN nanowire with a well-defined p–n junction. Applied Physics Letters, 2003. 83(8): p. 1578-1580.
24. Zhong, Z., et al., Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Letters, 2003. 3(3): p. 343-346.
25. Soulen, J.R., P. Sthapitanonda, and J.L. Margrave, Vaporization of inorganic substances: B2O3, TeO2 and Mg3N2. The Journal of Physical Chemistry, 1955. 59(2): p. 132-136.
26. Sekiguchi, H., K. Kishino, and A. Kikuchi, Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Applied physics letters, 2010. 96(23): p. 231104.
27. https://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/.
28. Yam, F. and Z. Hassan, InGaN: An overview of the growth kinetics, physical properties and emission mechanisms. Superlattices and Microstructures, 2008. 43(1): p. 1-23.
29. Http://www.veeco.com.tw/.
30. Komaki, H., et al., Nitrogen supply rate dependence of InGaN growth properties, by RF-MBE. Journal of crystal growth, 2007. 305(1): p. 12-18.
31. Guo, W., et al., Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano letters, 2010. 10(9): p. 3355-3359.
32. Zubia, D. and S. Hersee, Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials. Journal of applied physics, 1999. 85(9): p. 6492-6496.
33. Waag, A., et al., The nanorod approach: GaN NanoLEDs for solid state lighting. physica status solidi (c), 2011. 8(7‐8): p. 2296-2301.
34. Li, S. and A. Waag, GaN based nanorods for solid state lighting. Journal of Applied Physics, 2012. 111(7): p. 5.
35. Sanchez-Garcia, M., et al., The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN-and AlN-layers grown by molecular beam epitaxy on Si (1 1 1). Journal of crystal growth, 1998. 183(1-2): p. 23-30.
36. Ristić, J., et al., On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy. Journal of crystal growth, 2008. 310(18): p. 4035-4045.
37. Debnath, R., et al., Mechanism of molecular beam epitaxy growth of GaN nanowires on Si (111). Applied Physics Letters, 2007. 90(12): p. 123117.
38. http://wanda.fiu.edu/teaching/courses/Modern_lab_manual/pn_junction.html#background.
39. https://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap04/chap04.htm.
40. Kim, H.-M., et al., High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano letters, 2004. 4(6): p. 1059-1062.
41. Kumakura, K., et al., Minority carrier diffusion length in GaN: Dislocation density and doping concentration dependence. Applied Physics Letters, 2005. 86(5): p. 052105.
42. J. R. Roth, Industrial plasma engineering-Volume 1: Principles Institution of Physics. Bristol and Philadelphia: Institution of Physics Publishing, 1995.
43. https://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html/.
44. 汪建民,材料分析,中國材料科學學會,新竹市,頁別,2009.
45. Lim, S.Y., et al., Applications of photoluminescence imaging to dopant and carrier concentration measurements of silicon wafers. IEEE Journal of Photovoltaics, 2013. 3(2): p. 649-655.
46. Suski, T., et al., J. Jun, M. Bockowski, S. Porowski and TD Moustakas. Appl. Phys. Lett, 1995. 67: p. 2188.
47. 張香棨,成長核殼式n型及p型氮化鎵奈米柱用於發光二極體元件之製作, 國立成功大學化工系碩士論文, 民國105年.
48. Kim, K. and J.G. Harrison, Critical Mg doping on the blue-light emission in p-type GaN thin films grown by metal–organic chemical-vapor deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2003. 21(1): p. 134-139.
49. Reshchikov, M., et al., Effect of potential fluctuations on photoluminescence in Mg‐doped GaN. physica status solidi (c), 2005. 2(7): p. 2761-2764.
50. Chichi, Y., et al., Optical and Electrical Properties of GaN. Mg Grown by MOCVD. 2008.
51. Iida, D., et al., Compensation effect of Mg-doped a-and c-plane GaN films grown by metalorganic vapor phase epitaxy. Journal of Crystal Growth, 2010. 312(21): p. 3131-3135.
52. Obloh, H., et al., Self-compensation in Mg doped p-type GaN grown by MOCVD. Journal of crystal growth, 1998. 195(1): p. 270-273.
53. 吳東憲, 以電漿輔助化學氣相沉積法成長氮化鎵奈米柱於光電元件之應用, 國立成功大學化工系博士論文, 民國101年.
54. Song, K.M., et al., Properties of Si-doped a-plane GaN grown with different SiH4 flow rates. Japanese Journal of Applied Physics, 2011. 50(5R): p. 055502.
55. Nakamura, S., T. Mukai, and M. Senoh, High‐brightness InGaN/AlGaN double‐heterostructure blue‐green‐light‐emitting diodes. Journal of Applied Physics, 1994. 76(12): p. 8189-8191.
56. Nakamura, S., et al., High‐power InGaN single‐quantum‐well‐structure blue and violet light‐emitting diodes. Applied Physics Letters, 1995. 67(13): p. 1868-1870.
校內:2022-07-01公開