簡易檢索 / 詳目顯示

研究生: 羅國瑋
Luo, Guo-Wei
論文名稱: 聚苯噁唑-聚亞醯胺共聚物/黏土奈米複合材料合成及性質之研究
Synthesis and Properties of Poly(benzoxazole-imide) Copolymer/Clay Nanocomposites
指導教授: 許聯崇
Hsu, Lien-Chung Steve
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 104
中文關鍵詞: 聚苯噁唑-聚亞醯胺黏土奈米複合材料
外文關鍵詞: poly(benzoxazole-imide), clay, nanocomposites
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究經由有機胺dodecylamine(DOA)及4-phenoxyaniline(POA)和鈉-蒙脫土(Na+-montmorillonite)進行離子交換反應,製成膨潤化的有機黏土(oganoclay) 。再利用2,2-bis(3-amino-4-hydroxyphenol)hexafluoropropane(BisAPAF)、4,4-oxydiphthalic anhydride(ODPA) 與isophthaloyl dichloride(IC)三種單體進行低溫聚縮合反應,合成固有黏度為0.21dL/g 的可溶性聚苯噁唑- 聚亞醯胺共聚物『poly(benzoxazole-imide) copolymer』的前趨物(precursor)-聚羥醯胺-聚醯胺酸『poly(hydroxyamide-amic acid)』。再將不同比例有機黏土和PHA-PAA precursor 混合,經過高溫加熱環化反應後,製成一種新型的PBO-PI copolymer/clay nanocomposites。由熱機械(TMA)分析得知,PBO-PI copolymer 的玻璃轉移溫度(Tg)為331℃。X-ray 繞射分析與TEM 分析顯示,DOA-clay 添加至7wt%與POA-clay 添加至3wt%時,呈奈米脫層型分散,當POA-clay 添加量超過3wt%時,黏土開始出現聚集或者插層分散。熱機械(TMA)分析指出,PBO-PI copolymer的熱膨脹係數隨著黏土的增加而降低,添加7wt%可以降低33~35%。由熱重量(TGA)分析可以看出添加有機黏土,可以略為增加PBO-PIcopolymer 的熱裂解溫度。由機械性質分析可以看出,有機黏土可以增加PBO-PI copolymer 的彈性模數,添加7wt%可以增加68~95%,但其伸長率則隨著黏土增加而降低。由吸水性實驗可以看出添加黏土可以降低PBO-PI copolymer 的吸水率,添加7wt%可以降低16~23%。從可見度分析可看出,隨著黏土的添加會降低PBO-PI copolymer 的可見度,但由熱安定性較好的POA-clay 所製成的薄膜,具有較佳的透光率。

      Poly(benzoxazole-imide) (PBO-PI) copolymer/clay nanocomposites have been prepared from a PBO-PI precursor-poly(hydroxyamide-amic acid) (PHA-PAA) and two different organoclays. The PBO-PI precursor was made by a polycondensation reaction between 2,2-bis(3-amino-4-hydroxyphenol) hexafluoropropane (BisAPAF), 4,4-oxydiphthalic anhydride (ODPA) and isophthaloyl dichloride (IC). The organoclays were formed by a cation exchange reaction between a Na+-montmorillonite clay and an ammonium salt of dodecylamine (DOA) or 4-phenoxyaniline (POA). The glass transition temperature (Tg) of PBO-PI copolymer is 331℃. Both X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses showed that the
    organoclays were dispersed in PBO-PI copolymer matrix in a nanoscale. The in-plane coefficient of thermal expansion (CTE) of PBO-PI copolymer/clay film was decreased with the increasing amount of organoclay. The CTE of PBO-PI copolymer/clay film which contained 7 wt % DOA-clay was decreased 35% compared to the pure PBO-PI film and the CTE of PBO-PI copolymer/clay film which contained 7 wt % POA-clay was decreased 33%. The thermal decomposition temperatures of PBO-PI copolymer/clay films increased with the increasing amount of organoclay. The tensile modulus of PBO-PI copolymer/clay films increased with the increasing amount of organoclay. The tensile modulus of PBO-PI copolymer/clay film which contained 7 wt % DOA-clay was increased 95% compared to the pure PBO-PI copolymer film and the tensile modulus of PBO-PI copolymer/clay film which contained 7 wt % POA-clay was increased 68%. The water absorption of PBO-PI copolymer/clay film was decreased with the increasing amount of organoclay. From UV-Vis spectra, the PBO-PI copolymer/POA-clay film showed a better transparency than the PBO-PI copolymer/DOA-clay film. That could be due to the fact that POA has a higher thermal stability than DOA.

    摘要.............................................Ⅰ Abstract ........................................Ⅲ 誌謝.............................................Ⅴ 目錄.............................................Ⅹ 圖目錄...........................................XI 第一章 緒論.......................................1 1-1 前言..........................................1 1-2 研究動機與目的................................3 1-3 研究架構......................................5 第二章 文獻回顧...................................6 2-1 引言..........................................6 2-2 黏土之介紹....................................9 2-3 聚苯噁唑之介紹...............................13 2-4 聚亞醯胺之介紹...............................16 2-5聚苯噁唑-聚亞醯胺共聚物之介紹.................19 2-6 黏土/高分子奈米複合材料之介紹................21 2-6-1 黏土/高分子奈米複合材料之製備方法..........21 2-6-2 黏土/高分子奈米複合材料之型態..............23 2-6-3 奈米高分子複合材料之特性...................25 2-6-4 奈米高分子複合材料之應用...................25 2-7 奈米材料未來發展趨勢.........................28 第三章 實驗方法與步驟............................33 3-1 實驗材料.....................................33 3-2 實驗儀器.....................................34 3-3 實驗步驟.....................................35 3-3-1 黏土之改質.................................35 3-3-2 聚羥醯胺-聚醯胺酸前趨物之合成..............36 3-3-3 聚苯噁唑-聚亞醯胺共聚物/黏土奈米複合材料薄 膜之製備.........................................37 3-4 性質測試與分析...............................38 3-4-1 固有黏度測定...............................38 3-4-2 傅立葉紅外線光譜儀分析(FT-IR)..............39 3-4-3 核磁共振光譜儀分析(1H-NMR) ................39 3-4-4 元素分析(EA) ..............................40 3-4-5 聚苯噁唑-聚亞醯胺/黏土奈米複合材料之型態分析.................................................40 3-4-5-1 X-ray繞射分析(XRD) ......................40 3-4-5-2 穿透式電子顯微鏡觀察(TEM) ...............40 3-4-6 熱性質分析.................................41 3-4-6-1 熱重損失分析(TGA)........................41 3-4-6-2 熱機械分析(TMA)..........................41 3-4-7 薄膜機械性質分析...........................41 3-4-8 吸水性實驗.................................42 3-4-9 可見度測試.................................42 第四章 結果與討論................................47 4-1 聚苯噁唑-聚亞醯胺共聚物之分析................47 4-1-1 共聚物之合成...............................47 4-1-2 固有黏度測定...............................48 4-1-3 玻璃轉移溫度之測定.........................48 4-1-4 傅立葉紅外線光譜分析.......................49 4-1-5 核磁共振光譜分析...........................50 4-1-6 元素分析...................................50 4-2 有機黏土之分析...............................51 4-2-1 有機黏土之製備.............................51 4-2-2 傅立葉紅外線光譜分析.......................52 4-2-3 熱重損失分析...............................53 4-2-4 X-ray繞射分析..............................53 4-3 聚苯噁唑-聚亞醯胺共聚物/黏土奈米複合材料之分 析...............................................55 4-3-1 奈米複合材料之製備.........................55 4-3-2 X-ray繞射分析..............................56 4-3-3 穿透式電子顯微鏡分析.......................57 4-3-4 熱膨脹係數分析.............................58 4-3-5 熱重損失分析...............................59 4-3-6 機械性質分析...............................60 4-3-7 吸水性分析.................................62 4-3-8 可見度分析.................................62 第五章 結論......................................96 參考文獻.........................................99 自述............................................104

    1. 蔡宗燕,化工資訊,1998,Vol.2,28
    2. 張代融,”聚甲基丙烯酸甲酯/水滑石奈米複合材料之合成與物
    性”,國立成功大學化學工程研究所碩士論文,2002
    3. Ree , M.;Kim, K.;Woo, S. H.;Chang, H. J. Appl. Phys., 1997, 81, 698.
    4. Numata, S. et.al. In Rccent Advanced in Polyimide Science and Technology, Weber, W. D.;Gupta, M. R. Eds. Scoiety of Plastics Engineers, New York, 1987, 164.
    5. Auman, B. C. In Advance in Polyimide Science and Technology, Feger, F. et.al. Eds. Scoiety of Plastics Engineers, New York, 1993, 15.
    6. Arnold, F.E. et.al. Polymer, 1992, 33, 5179.
    7. Yano, K.;Usuki, A.;Okada, A.;Kurauchi, T.;Kamigato, O. J. Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31, 2493.
    8. Tyan, H. L.;Liu, Y. C.;Wei, K. H. Chemistry of Materials, 1999, 11, 1942.
    9. 王守明,礦產保護與利用,1993,第二期,21
    10. Pinnavaia, T. J. Science, 1983, 26, 365.
    11. May, C.;Tanaka, Y. Epoxy Resins:Chemistry and Technology, 1984, 17, 983.
    12. Lee, H.;Neville, K. Handbook of Epoxy Resins, 1967, 42, pp3561-3569.
    13. Usuki, A.;Kawasumi, M.;Kojima, Y. Journal of Materials Research, 1991, 7, 856.
    14. Messersmith, P. B.;Giannelis, E. P. Journal of Polymer Science Part A: polymer Chemistry, 1995, 33, 1047.
    15. Ishida, H.;Campbell, S.;Blackwell, J. Chemistry of Materials, 2000, 12, 1260.
    16. Burnside, S. D.;Giannelis, E. P. Chemistry of Materials, 1995, No.9, 7, 1597.
    17. 趙杏媛、張有瑜,黏土礦物與黏土礦物分析,海洋出版社,1990
    18. Genetti Materials Research Society Symposium Proceeding Electronic Packaging Materials Science IX, 1997, 6, 445.
    19. Hunter, R. J. Foundation of Colloid Science, 1992, I, 25.
    20. Giannelis, E. P. Adv. Mater., 1996, 8, 29.
    21. Akelah, A.;Moet, A. J. App. Polym. Sci., 1994, 55, 153.
    22. Kingery, W. D.;Bowen, H. K.;Uhlmann, D. R. Introduction to Ceramiccs, 1975, pp594-596.
    23. Grim, R. E. Clay Mineralogy, 1968, 2, pp331-338.
    24. Barrer, R. M. Clays Clay Miner, 1989, 37, 385.
    25. 蘇佳琪,”氧化鋁及氧化鐵插層蒙脫石吸附水中天然有機物之研究”,國立成功大學資源工程研究所碩士論文,2002
    26. Kathleen, A. C. Applied Clay Science, 2000, 17, 1.
    27. Franchi, M.;Bramanti, E.;Bonzi, L.M.;Orioli, P.L.;Vettori, C. Origins of Life and Evolution of the Biosphere, 1999, No.3, 29, 297.
    28. Ertem, G.;Ferris, J. P. Origins of Life and Evolution of the Biosphere, 1998, 28, 485.
    29. Brinker, C. J.;Scherer, G. W. Sol-Gel Science, 1990, pp555-561.
    30. Mark, J. E.;Lee, C. Y.;Binaconi, P. A. Hybrid Organic-Inorganic Composites, 1995, 5, 585.
    31. Terasava, M.;Minami, S.;Rubin, J. Hybird Microelectron, 1993, 6, 607.
    32. McPherson, J. W.;Dunn, C. F. J. Vac. Sci. Technol., 1987, 5, 1321.
    33. Yost, F. G. Scripta Mat., 1989, 23, 1323.
    34. Dang, C. D.;Mather, P. T.;Alexander, M. D. JR.;Grayson, C. J.;Houtz, M. D.;Spry, R. J.;Arnold, F. E. Journal of Polymer Science: Part A: Polymer Chemistry, 2001, 38, 1991.
    35. Haba, O.;Okazaki, M.;Nakayama, T.;Ueda, M. J. Photopolym. Sci. Technol., 1997, 10, 55.
    36. Seino, A.;Mochizuki, O.;Haba, O.;Ueda, M. J. Polym. Sci., 1998, 36, 2261.
    37. Joseph, W. D.;Abed, J. C.;Mercier, R.;McGrath, J. E. Polymer, 1994, 35, 5046.
    38. Joseph, W. D.;Mercier, R.;Prasad, A.;Marand, H.;McGrath, J. E. Polymer, 1993, 24, 685.
    39. Tokoh, A. Photosensitive Polymers, 1999, 12, 89.
    40. Bower, G. M.;Frost, L. W. Journal of Polymer Science Part A, 1963, 3135.
    41. 金進興,工業材料,1995,107期,128
    42. Maruyama, Y.;Oishi, Y.;Kakimoto, M.;Imai, Y. Macormolecules, 1988, 21, 2305.
    43. Hilborn, J. G.;Palmer, T. D.;Volksen, W. Macromolecules, 1990, 23, 2854.
    44. Hedrick, J. L.;Hilborn, J. G.;Palmer, T. D.;Labadie, J. W.;Volksen, W. J. Polym Sci PartA:Polym Chem, 1990, 28, 2255.
    45. Harris, W. J.; Hwang, W. F. U.S. Pat. 5985969 , 1999.
    46. Liou, G. S. J. Polym. Sci.:Part A, 1999, 37, 4151.
    47. Liou, G. S. Macromol. Chem. Phys., 2000, 201, 1141.
    48. Dammel, R. Diazonaphthoquinone-Based Resists, SPIE turtorial text, SPIE Optical Engineering Press, 1993.
    49. Hsu, L. C.;Chang, K. C.;Huang, Y. P.;Tsai, S. J. Journal of Applied Polymer Science, 2003, 88, 2388.
    50. Usuki, A.;Kojima, Y.;Kawasumi, M.;Okada, A.;Fukushima, Y.;Kurauchi, T.;Kamigaito, O. J. Mater. Res., 1993, 8, 1179.
    51. Yokota, R.;Horiuchi. R.;Kochi, M.;Soma, H.;Mita, I. J. Polym. Sci: Polym. Lett., 1988, 26, 215.
    52. 廖建勛,工業材料,1997,125期,108
    53. Micheal, A.;Philippe, D. Materials Science and Engineering, 2000, 28, 1.
    54. 劉慧玲,”台東樟原黏土資源之有機黏土備製研究”,國立成功大學資源工程研究所碩士論文,2001
    55. Delozier, D.M.;Orwoll, R.A.;Cahoon, J.F. Polymer, 2002, 43, 813.
    56. Liang, Z. M.;Yin, J.;Xu, H. J. Polymer, 2003, 44, 1391.
    57. Chang, J. H.;Kwang, M. P.;Cho, D. Polymer Engineering and Science, 2001, No.9, 41, 1514.
    58. Chang, J. H.;Kwang, M. P. Polymer Engineering and Science, 2001, No.12, 41, 2226.
    59. Hsiao, S. H.;Liou, G. S.;Chang, L. M. Journal of Applied Polymer Science, 2001, 80, 2067.
    60. Gu, A.;Kuo, S. W.;Chang, F. C. Journal of Applied Polymer Science, 2001, 79, 1902.
    61. 郭文法,工業材料,1997,125期,129
    62. 蔡宗燕,工業材料,1997,125期,120
    63. 廖建勛,工業材料,1997,125期,108
    64. 廖建勛,化工資訊,1998,Vol.2,20
    65. 賴宏仁,工業材料,1999,153期,94
    66. Giannelis, E. P. Adv. Mater, 1996, 8, 29.
    67. Gelfer, M. Y.;Burger, C.;Hsiao, B. S.;Chu, B.;Song, H. H.;Carlos, A. O.;Liu, L.;Si, M.; Rafailovich, M. Polymeric Materials: Science & Engineering, 2001, 85, 16.
    68. Lan, T. ; Kaviratna, P. D. ; Pannavaia, T. J. Chemistry of Materials, 1994, 6, 573.
    69. Skoog, D. A. ; Leary, J. J. Saunders College Publishing, US, 1992, 252.
    70. Morikawa, A. ; Iyoku, Y. ; Kakimoto, M.; Imai, Y. Journal of Materials Chemistry, 1992, 2, 679.

    下載圖示 校內:2007-07-07公開
    校外:2007-07-07公開
    QR CODE