簡易檢索 / 詳目顯示

研究生: 蔡咏真
Tsai, Yung-Chen
論文名稱: 微細Ag-2Pd-0.2Au合金導線放電結球特性及接合界面通電與熱效應探討
Electric Flame-Off Characteristics of Fine Ag-2Pd-0.2Au Alloy Wire and Effects of Electrification and Heat on the Bonding Interface
指導教授: 呂傳盛
Lui, Truan-Sheng
陳立輝
Chen, Li-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 62
中文關鍵詞: 銀-鈀-金合金線銀線放電結球打線接合
外文關鍵詞: Ag-2Pd-0.2Au Alloy Wires, Ag Wires, Electric Flame-Off (EFO), Wire Bonding
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   現今電子封裝受到金價持續攀升影響,以其他系統之導線來取代金線製程成為發展趨勢。本研究選用線徑20微米的銀-鈀-金合金導線作為導線材料,除了有較低的成本優勢,也改善了以往純銀線在打線接合時,因為銀與鋁原子的擴散速率差異所造成在介金屬化合物層中產生孔洞情形;鈀及金的添加,亦能提高線材的拉伸性質及抗氧化性。
      本研究透過200~400℃並持溫30分鐘之真空退火熱處理使線材組織均勻化,並調查退火後硬度及拉伸性質。退火後硬度及斷裂荷重隨著退火溫度的增加而下降,延性則是上升。在選定一適當的退火溫度後(350℃),利用未退火與退火的線材對於兩者進行放電結球的特性調查。未退火與退火的線材在結球後都有良好的成球性,兩者球部皆呈現柱狀晶,並且在柱狀晶末端有第二支臂的生成。此外,本研究以電子微探儀調查球部中元素分佈,發現鈀有聚集在靠近頸部的情形。
      在打線接合後,本研究於175℃並進行0、24、72、168小時之熱時效試驗,並以熔斷電流(0.45 A)之80%電流(0.36 A)進行持續2、12小時之通電試驗,探討導線與鋁基板接合界面的特性,並調查第一銲點之拉力強度。在接合界面的觀察,通電後的界面除了可能會因原子間擴散之外,也會因受到電流通過時,電子流方向的影響,使得鋁膜往球部移動顯著。而於熱時效試驗168小時後之接合界面觀察到孔洞,此孔洞應為原子間擴散而產生的Kirkendall voids。
      銀-鈀-金合金導線與鋁基板接合後經過熱時效試驗至168小時後,仍能維持大於6 gf的接合強度。而通電2小時後,接合強度則降至4 gf,並且發現打線接合後拉伸的斷裂位置會因為通電而使得斷裂位置由未通電的HAZ區改為斷裂在隨機的線材端上。
      與鋁基板接合的銀-鈀-金合金導線分別經過熱時效試驗以及通電試驗後,在第一銲點拉力測試中,皆未出現從基板剝離的情形發生,顯示銀-鈀-金合金導線與鋁基板有良好的接合性。最後在接合後I-V曲線電性調查發現,在同樣經過通電試驗或熱時效試驗後,與純銀線相比,銀-鈀-金合金導線電性都具有較佳的電性表現。

    In this study, the tensile properties and hardness of Ag-2Pd-0.2Au alloy wires with Φ = 20 µm (0.8mil) were investigated. The microstructural characteristics before and after electric flame-off (EFO) process were also studied. The microstructures of the free air ball (FAB) were columnar grains and dendrites. To understand the relationship between the distribution of alloying elements and the microstructures of FAB, Electron Probe X-ray analysis (EPMA) was used. Experimental results indicated that Pd atoms segregated at upper region of FAB. Additionally, to verify the capability of Ag-2Pd-0.2Au alloy wires, bonded samples were tested under 175℃ for 24, 72 and 168 h (heat aging test). Ag-2Pd-0.2Au alloy wires retain good bondability that its bonding strength were about 6 gf. The electrical behavior of bonded samples after heat aging test were investigated and compared to the pure Ag wires. Ag wires degraded rapidly after heat aging test. Ag-2Pd-0.2Au alloy wires possessed better bonding performance than Ag wires.

    摘要 I 誌謝 IX 目錄 XI 圖目錄 XIV 表目錄 XVI 第一章 前言 1 第二章 文獻回顧 2 2.1 打線接合 2 2.1.1 接合銲頭及球型接合 2 2.1.2 接合技術及熱音波接合 3 2.2 放電結球 3 2.2.1 成球外觀 3 2.2.2 成球微觀組織及機械性質 4 2.3 影響打線接合之因素 5 2.4 接合材料 6 2.4.1 金線 6 2.4.2 銅線 6 2.4.3 銀線 7 2.5 熱與電效應對介金屬化合物之影響 8 2.5.1 熱效應對介金屬化合物之影響 8 2.5.2 電效應對介金屬化合物之影響 8 第三章 實驗步驟與方法 14 3.1 實驗流程及探討方向 14 3.2 實驗材料 14 3.3 真空退火熱處理 14 3.4 放電結球與打線接合 15 3.5 微觀組織觀察 15 3.6 微硬度及奈米壓痕試驗 16 3.6.1 微硬度試驗 16 3.6.2 奈米壓痕試驗 16 3.7 拉伸試驗 16 3.7.1 線材拉伸試驗 16 3.7.2 第一銲點拉力試驗 17 3.8 元素分佈分析 17 3.9 電性量測及通電試驗 17 3.9.1 電阻率、熔斷電流及I-V曲線 17 3.9.2 線材通電試驗 17 3.9.3 接合通電試驗 18 3.10 熱時效試驗及接合界面分析 18 第四章 結果與討論 25 4.1 銀合金線真空退火熱處理特性 25 4.1.1 微觀組織 25 4.1.2 微硬度與拉伸性質 25 4.1.3 電阻率與熔斷電流 26 4.2 銀合金線放電結球特性分析 26 4.2.1 結球外觀與微觀組織 26 4.2.2 球部與熱影響區硬度分佈 27 4.2.3 球部元素分佈 28 4.3 銀合金線之線材通電試驗 28 4.3.1 通電後線材表面形貌與微觀組織特性 28 4.3.2 通電後線材微硬度與拉伸性質 28 4.4 接合界面特性分析 29 4.4.1 經通電試驗後接合界面特性 29 4.4.2 經熱時效試驗後之接合界面特性 30 4.4.3 接合界面介金屬化合物鑑定 30 4.4.4 經通電及熱時效試驗後接合強度及電性評估 30 第五章 結論 57 參考文獻 59

    1. H. Xu, C. Liu, V. V. Silberschmidt, S. S. Pramana, T. J. White, Z. Chen, V. L. Acoff, Intermetallic phase transformations in Au–Al wire bonds, Intermetallics (2011) Vol. 19, p. 1808-1816.
    2. C. D. Breach, F. Wulff, New observations on intermetallic compound formation in gold ball bonds: general growth patterns and identification of two forms of Au4Al, Microelectronics Reliability (2004) Vol. 44, p. 973-981.
    3. C. Lu, Review on silver wire bonding, Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT) (2013) p. 226 - 229.
    4. L. J. Kai, L. Y. Hung, L. W. Wu, M. Y. Chiang, D. S. Jiang, C. M. Huang, Y. P. Wang, Silver alloy wire bonding, Electronic Components and Technology Conference (ECTC) (2012) p. 1163-1168.
    5. C. H. Cheng, H. L. Hsiao, S. I. Chu, Y. Shieh, C. Y. Sun, C. Peng, Low cost silver alloy wire bonding with excellent reliability performance, Electronic Components and Technology Conference (ECTC) (2013) p. 1569-1573.
    6. G. G. Harman, Wire Bonding in Microelectronics. third ed, McGraw-Hill (2010).
    7. S. Murali, N. Srikanth, C. J. Vath, Grains, deformation substructures, and slip bands observed in thermosonic copper ball bonding, Materials Characterization (2003) Vol. 50, p. 39-50.
    8. Y. Tian, C. Wang, I. Lum, M. Mayer, J. P. Jung, Y. Zhou, Investigation of ultrasonic copper wire wedge bonding on Au/Ni plated Cu substrates at ambient temperature, Journal of Materials Processing Technology (2008) Vol. 208, p. 179-186.
    9. A. Coucoulas, Hot work ultrasonic bonding, proceedings, Electronic Componets Conference, IEEE 20th (1970) p. 549-556.
    10. S. Kaimori, T. Nonaka, A. Mizoguchi, The development of Cu bonding wire with oxidation-resistant metal coating, IEEE Transactions on Advanced Packaging (2006) Vol. 29, p. 227-231.
    11. A. Pequegnat, H. J. Kim, M. Mayer, Y. Zhou, J. Persic, J. T. Moon, Effect of gas type and flow rate on Cu free air ball formation in thermosonic wire bonding, Microelectronics Reliability (2011) Vol. 51, p. 43-52.
    12. P. Liu, L. Tong, J. Wang, L. Shi, H. Tang, Challenges and developments of copper wire bonding technology, Microelectronics Reliability (2012) Vol. 52, p. 1092-1098.
    13. H. W. Hsueh, F. Y. Hung, T. S. Lui, L. H. Chen, Microstructure, electric flame-off characteristics and tensile properties of silver bonding wires, Microelectronics Reliability (2011) Vol. 51, p. 2243-2249.
    14. 林宜璋,不同退火條件之銅導線經放電結球前後之機械性質與織構分析,第52-54頁,材料科學及工程研究所,國立成功大學,2007。
    15. 陳眉瑜,Ø20µm Ag-2Pd合金導線放電結球特性及打線接合界面通電效應探討,第27-60頁,材料科學及工程研究所,國立成功大學,2013。
    16. Y. W. Lin, R. Y. Wang, W. B. Ke, I. S. Wang, Y. T. Chiu, K. C. Lu, K. L. Lin, Y. S. Lai, The Pd distribution and Cu flow pattern of the Pd-plated Cu wire bond and their effect on the nanoindentation, Materials Science and Engineering: A (2012) Vol. 543, p. 152-157.
    17. C. J. Hang, W. H. Song, I. Lum, M. Mayer, Y. Zhou, C. Q. Wang, J. T. Moon, J. Persic, Effect of electronic flame off parameters on copper bonding wire: Free-air ball deformability, heat affected zone length, heat affected zone breaking force, Microelectronic Engineering (2009) Vol. 86, p. 2094-2103.
    18. A. S. f. Metals, Properties & Selection - Nonferrous Alloys and Pure Metals, in Metals handbook, Vol. 2. American Society for Metals (1979).
    19. S. Murali, N. Srikanth, V. C. J., An analysis of intermetallics formation of gold and copper ball bonding on thermal aging, Materials Research Bulletin (2003) Vol. 38, p. 637-646.
    20. H. J. Kim, J. Y. Lee, K. W. Paik, K.-W. Koh, J. Won, S. Choe, J. Lee, J. T. Moon, Y. J. Park, Effects of Cu-Al intermetallic compound (IMC) on copper wire and aluminum pad bondability, IEEE Transactions on Components and Packaging Technologies (2003) Vol. 26, p. 367-374.
    21. T. Uno, Enhancing bondability with coated copper bonding wire, Microelectronics Reliability (2011) Vol. 51, p. 88-96.
    22. J. S. Cho, K. A. Yoo, S. J. Hong, J. T. Moon, Y. J. Lee, W. Han, H. Park, S. W. Ha, S. B. Son, S. H. Kang, K. H. Oh, Pd effects on the reliability in the low cost Ag bonding wire, Electronic Components and Technology Conference (ECTC) (2010) p. 1541-1546.
    23. T. C. Wei, A. R. Daud, Mechanical and electrical properties of Au-Al and Cu-Al intermetallics layer at wire bonding interface, Journal of Electronic Packaging (2003) Vol. 125, p. 617-620.
    24. S. Kumar, H. Kwon, Y. I. Heo, S. H. Kim, J. S. Hwang, J. T. Moon, Thermosonic ball bonding behavior of Ag-Au-Pd alloy wire, Electronics Packaging Technology Conference, IEEE 15th (2013) p. 15-20.
    25. H. W. Hsueh, F. Y. Hung, T. S. Lui, L. H. Chen, Effect of the direct current on microstructure, tensile property and bonding strength of pure silver wires, Microelectronics Reliability (2013) Vol. 53, p. 1159-1163.
    26. C. K. Hu, M. B. Small, K. P. Rodbell, C. Stanis, P. Blauner, P. S. Ho, Electromigration failure due to interfacial diffusion in fine Al-Alloy lines, Applied Physics Letters (1993) Vol. 62, p. 1023-1025.
    27. A. T. Wu, K. N. Tu, J. R. Lloyd, N. Tamura, B. C. Valek, C. R. Kao, Electromigration-induced microstructure evolution in tin studied by synchrotron x-ray microdiffraction, Applied Physics Letters (2004) Vol. 85, p. 2490-2492.

    無法下載圖示 校內:2020-08-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE