| 研究生: |
王鏈嘉 Wang, Lien-Chia |
|---|---|
| 論文名稱: |
5-Aminolevulinic Acid在基底細胞癌
之代謝與光毒性作用 Metabolism and Phototoxicity of 5-Aminolevulinic Acid in Basal Cell Carcinoma |
| 指導教授: |
蔡瑞真
Tsai, Jui-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學研究所 Institute of Clinical Pharmacy |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 代謝 、光毒性 、基底細胞癌 |
| 外文關鍵詞: | 5-Aminolevulinic Acid, Basal Cell Carcinoma |
| 相關次數: | 點閱:155 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
5-Aminolevulinic acid(ALA)應用在光化學動力療法(photodynamic therapy, PDT)用以治療腫瘤,於過去10年內引起相當廣泛之討論及研究。而以ALA-PDT治療黑色素瘤以外的皮膚癌(如superficial squamous cell carcinoma,sSCC)時,能得到約90 %以上的治療效果;但是如用在治療皮膚基底細胞瘤(basal cell carcinoma, BCC)時,無論是初次治療或是復發率方面,皆不如其他的皮膚癌有效,如對nodular basal cell carcinoma僅有約10 ~ 50%之療效,且復發率高達100 %。且過去對於基底細胞瘤之研究主要著重於臨床治療,並無直接關於ALA用於皮膚基底細胞瘤細胞株的研究報告。
過去本實驗室以正常之裸鼠皮膚作為研究之模式,發現不論是在表皮或是真皮內PpIX的體內蓄積量隨著體外ALA經皮穿透速率之增加而漸趨飽和,顯示PpIX之蓄積量主要受限於細胞內將ALA代謝為PpIX之能力。
因此本研究之目的乃以細胞層級來探討ALA本身對BCC細胞株及人類株化角質細胞HaCaT的毒性(cytotocixity)、細胞產生PpIX之動力學、照光後細胞的存活率及鐵離子螯合劑對於兩細胞株內PpIX生成的影響。期望能藉由本研究的結果提供一最適當之ALA給藥劑量、光照時間及劑量用於BCC之治療。
研究結果顯示,投予0.2 ~ 5 mM ALA 24小時後,BCC仍保有約50%的存活率,而ALA對於HaCaT則較不具毒性。ALA培養 24小時內,兩種細胞所產生的PpIX量,除了5 mM之外,皆會隨著給藥濃度及時間而增加,而以BCC相對於HaCaT所產生之最大比例值在各濃度分別為:0.2 mM為24小時,0.5 mM為2小時,而1、2、5 mM為0.5小時,且最大之比例值出現在0.2 mM培養24小時。接著評估分別以ALA培養2 及4小時除藥後之PpIX動力學時,發現產生最大PpIX量及兩種細胞間最大之PpIX比值的時間,會隨著所投予的藥品濃度增加而增加,而最大之比值則出現在以0.5 mM ALA培養4小時後4小時。雖然BCC細胞株達到PpIX最高量的時間比HaCaT細胞株慢,但是就PpIX生成之最高量(PpIXmax)及AUC值來看,BCC細胞株皆大於HaCaT細胞株,顯示BCC細胞株生合成PpIX之能力大於HaCaT細胞株。
當兩細胞株分別以0.2至5 mM ALA培養4小時後,再以不同劑量LED光源(波長630 nm)於不同時間照射後,可得到BCC相對於HaCaT之存活率最低出現於以0.5 mM和1 mM ALA培養後4小時施以60 J/cm2之照光,且以0.5 mM不影響HaCaT之存活率。此結果亦顯示細胞內PpIX之含量為影響照光後存活率主要之因素。
繼續探討鐵離子螯合劑desferrioxamine (DFO)對兩細胞株PpIX生成之影響,研究結果顯示,兩細胞株皆會因DFO作用之故,而有PpIX蓄積及減緩排除的現象,間接指出兩者可能都有ferrochelatase酵素的存在,而以HaCaT細胞株較易受到DFO的作用而使細胞內PpIX含量較快達到飽和。但添加DFO後,BCC細胞株相對於HaCaT細胞株之PpIX含量比值則降低,顯示DFO反而不利於應用ALA-PDT對於BCC之選擇性。
Abstract
5-Aminolevulinic acid (ALA)-based photodynamic therapy to treat cancers has been widely discussed and investigated in the last decade. The application of ALA-PDT for the treatment of non-melanoma skin cancers, such as superficial squamous cell carcinoma, resulted in satisfied, complete response. However, the therapeutic outcomes of ALA-PDT in basal cell carcinoma (BCC) were not as good as in other skin cancers. Despite extensive clinical experience and reports on ALA-PDT for the treatment of BCCs, none has addressed the PpIX generation kinetics and phototoxicity in cultured BCC cells. Previous study has demonstrated that saturable correlations exist between PpIX accumulation in both the epidermis and dermis in vivo and its transdermal flux in vitro, indicating PpIX accumulation is mainly limited by metabolic capacity of the skin.
The objectives of the study were to investigate ALA toxicity, protoprophyrin IX (PpIX) generation kinetics, cell survival ratio after light irradiation, and the influences of iron chelator, desferrioxamine (DFO) in PpIX generation following ALA incubation in basal cell carcinoma cells (BCC/KMC-1) and human immortalized keratinocytes (HaCaT). The ultimate goal was to optimize ALA-PDT in BCC.
Cultured BCC and HaCaT were incubated with 0.2 to 5 mM ALA for various lengths of time. After 24 hours incubation of ALA, only 50 % BCC survived, but HaCaT were not affected. In general, the PpIX content in both cells increased with incubation time at all ALA concentration except 5 mM. The ratio of PpIX content in BCC vs. HaCaT decreased with increasing concentration during 24 hours ALA incubation. The time of maximal ratio was 24, 2, 0.5, 0.5 and 0.5 h from 0.2 to 5 mM, respectively, with the greatest ratio occurring at 24 h incubation 0.2 mM ALA. The time to reach peak PpIX content post 2 h and 4 h ALA-incubations in both cells and the time of maximal ratio increased with ALA concentration. The greatest ratio appeared at 4 h post 4 h-incubation of 0.5 mM ALA. Although the time to reach peak PpIX content in BCC was slower than HaCaT, the peak PpIX content and area under the PpIX content-concentration curve were greater in BCC than HaCaT, indicating higher biosynthetic capacity of PpIX in BCC than HaCaT.
When both cells were irradiated by different doses of LED light at 0-24 h post 4 h-incubation of 0.2-5 mM ALA, the results demonstrated that the relative survival ratio of BCC vs. HaCaT was the lowest at 4 h post incubation of 0.5 and 1 mM ALA with light irradiation of 60 J/cm2 at 630 nm, with HaCaT survival not influenced by 0.5 mM ALA. The results also suggested cellular PpIX content as the major determinant for cytotoxity in both cells.
Finally, the addition of iron chelator, desferrioxamine (DFO), resulted in enhanced PpIX accumulation and delayed clearance, suggesting the presence of ferrochelatase in both cells. The cellular PpIX content has reached plateau in HaCaT at a lower DFO concentration than BCC. However, the ratio of PpIX content in BCC vs. HaCaT was decreased with DFO in comparison with ALA only, indicating lower selectivity of ALA-PDT in BCC vs. HaCaT.
參考文獻:
Ackroyd, R., C. Kelty, et al. (2001). The history of photodetection and photodynamic therapy. Photochem Photobiol 74(5): 656-69.
Bermudez Moretti, M., S. Correa Garcia, et al. (1993). Delta-aminolevulinic acid transport in Saccharomyces cerevisiae.Int J Biochem 25(12): 1917-24.
Berenbaum, M. C., S. L. Akande, et al. (1986). Meso-Tetra(hydroxyphenyl)porphyrins, a new class of potent tumor photosensitisers with favourable selectivity. Br J Cancer 54(5): 717-25.
Boukamp, P., R. T. Petrussevska, et al. (1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 10761-71.
Bown, S. G., C. J. Tralau, et al. (1986). Photodynamic therapy with porphyrin and phthalocyanine sensitization: quantitative studies in normal rat liver. Br J Cancer 54(1): 43-52.
Calzavara-Pinton, P. G. (1995). Repetitive photodynamic therapy with topical delta-aminolaevulinic acid as an appropriate approach to the routine treatment of superficial non - melanoma skin tumours. J Photochem Photobiol B 29(1): 53-7.
Chevretton, E. B., M. C. Berenbaum and R. Bonnett. (1992). The effect of photodynamic therapy on normal skeletal muscle in an animal model. Lasers Med Sci 7: 103-110.
Chiang, L. C., W. Chiang, et al. (1994). Establishment and characterization of a continuous human basal cell carcinoma cell line from facial skin (I) cytological behavior of early passages. Kaohsiung J Med Sci 10 (4): 170-6.
De Rosa, F. S. and M. V. Bentley (2000). Photodynamic therapy of skin cancers: sensitizers, clinical studies and future directives. Pharm Res 17(12): 1447-55.
Divaris, D. X., J. C. Kennedy, et al. (1990). Phototoxic damage to sebaceous glands and hair follicles of mice after systemic administration of 5-aminolevulinic acid correlates with localized protoporphyrin IX fluorescence. Am J Pathol 136(4): 891-7.
Doring, F., J. Walter, et al. (1998). Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J Clin Invest 101(12): 2761-7.
Elliott, T. (1993). Transport of 5-aminolevulinic acid by the dipeptide permease in Salmonella typhimurium. J Bacteriol 175(2): 325-31.
Elfsson, B., I. Wallin, S. Eksborg, et al. (1998). Stability of 5-aminolevulinic acid in aqueous solution. Eur J Pharm Sci 7: 87-91.
Fink-Puches, R., H. P. Soyer, et al. (1998). Long-term follow-up and histological changes of superficial nonmelanoma skin cancers treated with topical delta-aminolevulinic acid photodynamic therapy. Arch Dermatol 134(7): 821-6.
Fromm, D., D. Kessel, et al. (1996). Feasibility of photodynamic therapy using endogenous photosensitization for colon cancer. Arch Surg 131(6): 667-9.
Fuchs, C., R. Riesenberg, et al. (1997). pH-dependent formation of 5-aminolaevulinic acid-induced protoporphyrin IX in fibrosarcoma cells. J Photochem Photobiol B 40(1): 49-54.
Gibson, S. L., D. J. Cupriks, et al. (1998). A regulatory role for porphobilinogen deaminase (PBGD) in delta- aminolaevulinic acid (delta-ALA)-induced photosensitization. Br J Cancer 77(2): 235-43.
Haller, J. C., F. Cairnduff, et al. (2000). Routine double treatments of superficial basal cell carcinomas using aminolaevulinic acid-based photodynamic therapy. Br J Dermatol 143(6): 1270-5.
Hansen, M. B., S. E. Nielsen, et al. (1989). Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119(2): 203-10.
Heinritz, H., W. Benzel, et al. (1995). Photodynamic therapy of superficial skin tumors following local application of delta-aminolaevulinic acid. Adv Otorhinolaryngol 49: 48-52.
Kalka, K., H. Merk, et al. (2000). Photodynamic therapy in dermatology. J Am Acad Dermatol 42(3): 389-413.
Kennedy, J. C., R. H. Pottier, et al. (1990). Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B 6(1-2): 143-8.
Kessel, D., M. Antolovich, et al. (2001). The role of the peripheral benzodiazepine receptor in the apoptotic response to photodynamic therapy. Photochem Photobiol 74(2): 346-9.
Kondo, M., N. Hirota, et al. (1993). Heme-biosynthetic enzyme activities and porphyrin accumulation in normal liver and hepatoma cell lines of rat. Cell Biol Toxicol 9(1): 95-105.
Lui, H. and R. R. Anderson (1992). Photodynamic therapy in dermatology. Shedding a different light on skin disease. Arch Dermatol 128(12): 1631-6.
Martin, A., W. D. Tope, et al. (1995). Lack of selectivity of protoporphyrin IX fluorescence for basal cell carcinoma after topical application of 5-aminolevulinic acid: implications for photodynamic treatment. Arch Dermatol Res 287(7): 665-74.
Mesenholler, M. and E. K. Matthews (2000). A key role for the mitochondrial benzodiazepine receptor in cellular photosensitisation with delta-aminolaevulinic acid. Eur J Pharmacol 406(2): 171-80.
Moan, J., O. Bech, et al. (1998). Protoporphyrin IX accumulation in cells treated with 5-aminolevulinic acid: dependence on cell density, cell size and cell cycle. Int J Cancer 75(1): 134-9.
Morton, C. A., S. B. Brown, et al. (2002). Guidelines for topical photodynamic therapy: report of a workshop of the British Photodermatology Group. Br J Dermatol 146(4): 552-67.
Peng, Q., A. M. Soler, et al. (2001). Selective distribution of porphyrins in skin thick basal cell carcinoma after topical application of methyl 5-aminolevulinate. J Photochem Photobiol B 62(3): 140-5.
Peng, Q., T. Warloe, et al. (1995). Distribution of 5-aminolevulinic acid-induced porphyrins in noduloulcerative basal cell carcinoma. Photochem Photobiol 62(5): 906-13.
Peng, Q., T. Warloe, et al. (1997). 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. Cancer 79(12): 2282-308.
Peng, Q., K. Berg, et al. (1997). 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochem Photobiol 65(2): 235-51.
Pope, A. J. and S. G. Bown (1991). The morphological and functional changes in rat bladder following photodynamic therapy with phthalocyanine photosensitization. J Urol 145(5): 1064-70.
Pottier, et al. (1990). Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B 6(1-2): 143-8.
Rud, E., O. Gederaas, et al. (2000). 5-aminolevulinic acid, but not 5-aminolevulinic acid esters, is transported into adenocarcinoma cells by system BETA transporters. Photochem Photobiol 71(5): 640-7.
Riesenberg, R., C. Fuchs, et al. (1996). Photodynamic effects of 5-aminolevulinic acid-induced porphyrin on human bladder carcinoma cells in vitro. Eur J Cancer 32A(2): 328-34.
Santoro, O., G. Bandieramonte, et al. (1990). Photodynamic therapy by topical meso-tetraphenylporphinesulfonate tetrasodium salt administration in superficial basal cell carcinoma. Cancer Res 50(15): 4501-3.
Soler, A. M., T. Warloe, et al. (2001). A follow-up study of recurrence and cosmesis in completely responding superficial and nodular basal cell carcinomas treated with methyl 5-aminolaevulinate-based photodynamic therapy alone and with prior curettage. Br J Dermatol 145(3): 467-71.
Szeimies, R. M., P. Calzavara-Pinton, et al. (1996). Topical photodynamic therapy in dermatology. J Photochem Photobiol B 36(2): 213-9.
Tsai, J. C., I. H. Chen, et al. (2002). In vitro/in vivo correlations between transdermal delivery of 5-aminolaevulinic acid and cutaneous protoporphyrin IX accumulation and effect of formulation. Br J Dermatol 146(5): 853-62.
Uberriegler, K. P., E. Banieghbal, et al. (1995). Subcellular damage kinetics within co-cultivated WI38 and VA13-transformed WI38 human fibroblasts following 5-aminolevulinic acid-induced protoporphyrin IX formation. Photochem Photobiol 62(6): 1052-7.
Verkamp, E., V. M. Backman, et al. (1993). The periplasmic dipeptide permease system transports 5-aminolevulinic acid in Escherichia coli. J Bacteriol 175(5): 1452-6.
Warloe, T., H. Heyerdahl, Q. Peng, et al. (1994). Photodynamic therapy with 5-aminolaevulinic acid induced porphyrins and skin penetration enhancer for basal cell carcinoma. SPIE 2371 :226-235
Wolf, P. and H. Kerl (1995). Photodynamic therapy with 5-aminolevulinic acid: a promising concept for the treatment of cutaneous tumors. Dermatology 190(3): 183-5.