| 研究生: |
林祺富 Lin, Chi-Fu |
|---|---|
| 論文名稱: |
燃燒合成法,製備AlON-BN複合材料 Combustion Synthesis of AlON-BN Composites |
| 指導教授: |
鍾賢龍
Chumg, Hsien-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 氮氧化鋁-氮化硼 、燃燒合成法 |
| 外文關鍵詞: | AlON-BN, Combustion synthesis |
| 相關次數: | 點閱:90 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是研究以燃燒合成法製備AlON-BN複合材料。
氧化鋁是具有多用途的耐火材料,添加氮化硼可以改變其性質,提高其耐熱性、耐腐蝕性、抗熱衝擊性、並增強其磨損性,此複合材料之合成若使用氧化鋁和氮化硼為原料,其成本會比較高,由於氮化硼相當貴,其製造成本將高至實際應用無法接受的程度,為降低製造成本,本研究乃使用氧化硼、鋁粉及氮化鋁為原料,進行合成氧化鋁-氮化硼耐火材料之研究。本研究發現,雖然氧化硼和鋁粉的反應,是自發且高放熱的,但若只是用氧化硼與鋁粉為反應物,其產物只有氧化鋁,而沒有氮化硼的生成。經實驗研究,吾人發現添加小量的氮化鋁、氮化硼與氧化鋁等,於反應物中,只有添加氮化鋁有氮化硼的生成和氧化鋁-氮化鋁之化合物,而能順利地合成AlON-BN複合材料。吾人認為加入氮化鋁後,可防止鋁熔聚且可作為晶種,而能有效地促使鋁粉和氮氣反應生成氮化鋁,其產生之高熱量進而促成氧化硼之氮化反應,進而生成AlON-BN複合材料。
In this research, AlON-BN by combustion synthesis was developed. Alumina has been known as an important material because of its superior heat resistance properties. By adding boron nitride, the properties of Al2O3 such as heat resistance, corrosion resistance, thermal shock resistance, and the wear resistance can be improved. If we use alumina and boron nitride as raw material to synthesize the composite material, the cost is relatively high. Because boron nitride is quite expensive, the manufacturing cost is too high to acceptable. In order to reduce manufacturing costs, boron oxide, aluminum nitride and aluminum were use as raw materials to synthesize AlON - BN. In the result of my research, there was no boron nitride can be generate, if we use boron oxide and aluminum as reactants only, the product is just alumina even the reaction of boron oxide and aluminum is highly exothermic and spontaneous. Then we found that adding a small amount of aluminum nitride into boron oxide and aluminum mixture can generate both boron nitride - aluminum nitride and alumina, and furthermore AlON-BN composite materials can be synthesized successfully. We think that the agglomeration of aluminum can be prevent by adding aluminum nitride, on the other hand, the reaction of aluminum and nitrogen gas become more effectively which can produces high exothermal heat to the nitridation reaction of boron oxide then produce AlON-BN by using aluminum nitride as seed.
1. 汪建民, 陶瓷技術手冊Ceramic technology handbook. 1994(中華民國科技發展協會).
2. Sander, H.K., High-tech ceramics. C&E News, July 9,(1984).
3. 吳朗, 電子陶瓷-入門. 1992.
4. 阮錫煌, 感應電爐熔鑄能力本位訓練教材 '認識耐火材料'. 2001.
5. Technical Association of Refractories. Refractories Handbook. Technical As sociation of Refractories, Japan, 1998.
6. 沈鎮虎, 氮化硼(BN)在鍛造潤滑劑上之應用. 台灣鍛造協會鍛造技術新知, 2005.
7. Subrahmanyam, J. and M. Vijayakumar, Self-Propagating High-Temperature Synthesis. Journal of Materials Science, vol. 27, pp. 6249-6273, Dec 1 1992.
8. Merzhanov, A.G. and I.P. Borovins, Self-Spreading High-Temperature Synthesis of Refractory Inorganic Compounds. Doklady Akademii Nauk Sssr, vol. 204, pp. 366-&, 1972.
9. Merzhanov, A.G., Combustion processes that synthesize materials. Journal of Materials Processing Technology, vol. 56, pp. 222-241, Jan 1996.
10. Munir, Z.A. and U. Anselmi-Tamburini, Self-propagating exothermic reactions: The synthesis of high-temperature materials by combustion. Materials Science Reports, vol. 3, pp. 277-365, 1989.
11. Sheppard, L.M., "Powders That "Explode" Into Materials " Adv. Mater. Process, vol. 2, pp. 25-32. 1986.
12. 金雲學 and 張二林, 自蔓延合成技術及原位自生複合材料哈爾濱工業大學.
13. Sheppard, L.M., Aluminum Nitride - a Versatile but Challenging Material. American Ceramic Society Bulletin, vol. 69, pp. 1801-1812, Nov 1990.
14. Kahikin, B.I. and Merzhano.Ag, Theory of Thermal Propagation of a Chemical Reaction Front. Combustion Explosion and Shock Waves, 1966. 2(3): p. 22-&.
15. Strunina, A.G., et al., Ignition of Gasless Systems by a Combustion Wave. Combustion Explosion and Shock Waves, 1974. 10(4): p. 449-455.
16. Novozhilov, B.V., The rate of propagation of the front of an exothermic reaction in a condensed phase. Doklady Physical Chemistry, 1961. 141: p. 836.
17. 劉素英, 自蔓延高溫合成(SHS) TiN粉末的研究 vol. 自蔓延高溫合成技術研究進展. 武漢工業大學出版社, 1994.
18. 張學軍, 鄭永才, and 韓杰才, 氮氣壓力對Si3N4-SiC-TiN陶瓷自蔓延燃燒合成的影響. 複合材料學報 Acta Materiae Compositae Sinica, vol. 23, pp. 123-126, 2006.
19. 張寶林, 庄漢銳, and 符錫仁, 硅粉在高壓氮氣中字蔓延燃燒合成氮化硅的反應機理 vol. 自蔓延高溫合成技術研究進展. 武漢工業大學出版社, 1994.
20. Mason, E.J.L.a.B.J., The Heterogeneous and Homogeneous Nucleation of Supercooled Water," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 247, pp. 493-504, 1958.
21. Price, P.B., Nonbasal Glide in Dislocation‐Free Cadmium Crystals. Journal of Applied Physics, vol. 32, pp. 1746-1750, 1961.
22. Wanger, R.S., WhiskerTechnology. New York, 1970.
23. Joo, W.S.J.a.H.U., Catalytic growth of aluminum nitride whiskers by a modified carbothermal reduction and nitridation method. Journal of Crystal Growth, vol. 285, pp. 566-571, Dec 15, 2005.
24. H. Wang, D.O.N., J. C. Han, and S. Y. Du, Combustion synthesis of AIN whiskers. Journal of Materials Science, vol. 41, pp. 1697-1703, Mar, 2006.
25. 傅正義, 王為民, and 袁潤章, “自蔓延高溫合成(SHS)過成的點火模型與分析”, 自蔓延高溫合成技術研究進展. 武漢工業大學出版社, pp.6-11, 1994.
26. Merzhanov, A.G., New Manifestations of an Ancient Process’’; pp. 19–39 in Chemistry of Advanced Materials; A Chemistry for the 21st Century Monograph, Edited by C. N. R. Rao. Blackwell Scientific Publication, Oxford. 1993.
27. Merzhanov, A.G., SHS on the Pathway to Industrialization. Inter. J. SHS,10 [2] 237–55, 2001.
28. Jung, J. and S. Baik, Combustion Synthesis of AlON–BN Composites under Low Nitrogen Pressure. J. Am. Ceram. Soc., 90 [10] 3063–3069, 2007.
29. Chase Jr MW. NIST-JANAF thermochemical tables. 4th ed. New York, USA: American Chemical Society and American Institute of Physics. 1998.
30. W. T. Thompson, A.D.P., and C. W. Bale, Facility for the Analysis of Chemical Thermodynamics (FACT). Thermfact Ltd, Quebec, Canada, 1985.
31. Zhang, G.J., et al., Reactive synthesis of alumina-boron nitride composites. Acta Materialia vol.52 pp.1823–1835, 2004.
校內:2018-09-01公開