| 研究生: |
張軒榮 Chang, Hsuan-jung |
|---|---|
| 論文名稱: |
中孔洞材料在CO氧化與電極材料之應用 Applications of Mesoporous Materials in CO Oxidation and Electrodes |
| 指導教授: |
林弘萍
Lin, Hong-ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 石墨化 、CO氧化 、金奈米粒子 、直接甲醇燃料電池 、電容 |
| 外文關鍵詞: | DMFC, electrochemical capacitor, graphitized, Au NPs, CO oxidation |
| 相關次數: | 點閱:100 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究主題主要分為三大部份來探討,第一個部分為含金奈米粒子的中孔洞氧化矽材料的合成及應用;第二個部分為合成具有高石墨化結構的中孔洞碳材;第三個部份為中孔洞碳材在電化學上的應用。
第一部分:含金奈米粒子的中孔洞氧化矽材料的合成及應用
一般常以具有做為奈米粒子的保護劑及氧化矽有機模板雙功能之四級銨鹽為界面活性劑,以合成含金奈米粒子的中孔洞氧化矽材料。但是由於四級銨鹽價格昂貴且具有毒性,再加上合成條件嚴苛,所以本實驗將以環保且便宜的明膠取代四級銨鹽界面活性劑。由於明膠具備肽鍵的官能基和提供立體障礙的高分子量,所以可以成功地合成出尺度較小的奈米金粒子,以及採用一步驟合成含奈米粒子的氧化矽材料。此合成方法也適用於合成雙合金的奈米粒子。而本實驗所合成的樣品,在高溫時有很好的CO氧化活性,未來可以應用在水煤氣法製造氫氣。
第二部分:合成具有高石墨化結構的中孔洞碳材
本實驗利用中孔洞氧化矽模板拓印法和高分子混掺法,先合成含碳前驅物的氧化矽複合材料,再藉由加入金屬催化劑在氮氣下800-1000℃轉碳,可以得到具有石墨化結構的孔洞碳材。再藉由調控鎳金屬催化劑的含量,可以簡單地控制碳材的石墨化程度,並發現其表面積隨著石墨化程度增加而下降。利用此兩種方法所合成的石墨化碳材,表面積可以控制到450-600 m2/g,仍保有不錯的石墨化程度(Lc>6.0和d002<0.344),比商業用觸媒XC-72的表面積(250 m2/g)和石墨化程度(Lc=1.8和d002=0.366)的性質還要好。
第三部份:中孔洞碳材在電化學上的應用
本實驗所合成的中孔洞碳材利用其高表面積、大孔洞和高石墨化程度之性質,分別拿來做電容和直接甲醇燃料電池的效能測試。
在電容的效能測試上,發現表面積為1887 m2/g的中孔洞碳材,其電容初始值高達172 F/g;而孔洞尺度為11 nm的中孔洞碳材則在高速掃瞄時,除了有良好的充電放電行為,還可以保有約80 %的初始電容值;而高石墨化的中孔洞碳材雖然能提升導電度,但是會破壞非石墨化碳材的結構,反而下降表面積,因此使得初始電容值和電容保留率下降。所以當中孔洞碳材具有高表面積和孔洞尺度較大的特性,將會使電容的效能和快速充放電的行為更好。
在陽極的甲醇氧化活性測試上,發現高表面積的白金/碳觸媒能提供較大的電流密度(16.3 A/g),因為觸媒上的白金奈米粒子顆粒較小(3.7 nm)所致;而高石墨化的白金/碳觸媒除了能提供較大的電流密度(13.5 A/g),並且有較負的起始電位(-0.141V),這是因為碳材本身具有良好導電度的關係。而本實驗所合成大孔洞的中孔洞碳材,本身具有良好的導電度,且所製備的白金/碳觸媒的白金奈米粒子顆粒也很小(3.4 nm),但是其電流密度只有6.6 A/g,因此可以得知碳材的孔洞尺度太大,反而會降低陽極甲醇氧化的電流密度。
In this thesis, there are three major researching parts: I. Synthesis and application of Au NPs@mesoporous silica.; Ⅱ. Increasing the graphite extent of the mesoporous carbons.; Ⅲ. Electrochemical applications of the mesoporous carbons.
Part Ⅰ: Synthesis and application of Au NPs@mesoporous silica:
Synthesis of NPs@mesoporous silica is usually using surfactant of quaternary ammonium salts. Quaternary ammonium surfactants can be used as stabilizer agent of NPs and organic template of silica, but it is expensive, toxic and complicated synthetic procedures for the NPs@mesoporous silica. In this experiment, we used cheap and nature-friendly gelatin instead of quaternary ammonium surfactants to prepare NPs@mesoporous silica. Because gelatin has lots amino-functional groups of peptide bond and steric hindrance of huge molecular weight, it can be used to prepare small size of noble metal nanoparticles solution, and then one-pot synthetic method for the NPs@mesoporous silica. In addition, this synthetic method is also applied to prepare alloy nanoparticles. The Au NPs@mesoporous silica shows a good catalytic activity toward CO oxidation at high temperature. In future, this catalyst can be used to remove the CO for the syn-gas for the preparation of pure hydrogen gas.
Part Ⅱ: Increasing the graphite extent of the mesoporous carbons:
First, PF-silica resin was prepared by using silica-templating or polymer blending-templating method. Then, graphitized mesoporous carbon was prepared by pyrolysis of the metal precursor-PF-silica composites, which were prepared via a simple impregnation process. With the aid of impregnated metallic catalyst, amorphous carbon framework was transformed into the graphite structure under nitrogen atmosphere at 800-1000℃. According to the experimental results, it is clear that the graphite content of the mesoporous carbon increases with the adding amount of the Ni catalyst, and the surface area of the resulted carbons decrease with the increase of the graphitization degree. We found the graphitized mesoporous carbons prepared by using these two different synthetic methods, have surface area of 450-600 m2/g and good degree of graphitization (Lc>6.0 and d002<0.344) better than the commercial carbon black XC-72 with surface area (250 m2/g) and degree of graphitization (Lc=1.8 and d002=0.366).
Part Ⅲ: Electrochemical application of mesoporous carbon:
Because the resulted mesoporous carbons with high surface area, large pore, and good graphitization degree, the electrochemical performances in electrochemical capacitor and DMFC (direct methanol fuel cell) of three different mesoporous carbons obtained from different synthetic procedures were examined.
In the measurements on capacitances, it was found that the specific capacity of high surface area (1887 m2/g) of mesoporous carbon is 172 F/g at scan rate of 25 mVs-1. In addition, the mesoporous carbon with large pore (about 11.0 nm) exhibited near rectangular charge/discharge curve, and 80% capacity retention even at a high scan rate of 3000 mV s-1. Although the electronic conductivity of graphitized mesoporous is improved, the specific capacity and capacity retention of graphitized mesoporous carbon is relatively low. That is because that surface area of the mesoporous carbon decreases with the increases of the graphite extent. As a consequence, the mesoporous carbon with high surface area and large pore would demonstrate high-performance capacitance and used as the raw material for the high-power supercapacitor.
When using different mesoporous carbons as the supports of DMFC anode, we found that the Pt nanoparticles@high-surface-area mesoporous carbon shows a high current density of 16.3 Ag-1. The high current density is ascribed to well dispersion and pore-size confinements of the Pt nanoparticales. In comparison, the Pt@high-graphitized mesoporous carbon has a current density of 13.5 Ag-1 and negative onset potential at -0.141 V. However, the Pt nanoparticles@large-pore mesoporous carbon has is current density of only 6.6 Ag-1 in spite of of good ionic conductivity and small Pt nanoparticles size (3.4 nm).
1. http://www.nanoedu.ndhu.edu.tw/92forum/120601.pdf
2. A. P. Alivisators, Science, 1996, 271, 933
3. H. M. Yamaki, K. Kusakabe and S. Morooka, J. Memb. Sci., 1993, 85, 167
4. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.
5. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K.D.Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B.Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
6. C.-G. Wu, T. Bein, Chem. Mater., 1994, 6, 1109.
7. Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
8. C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 1996, 2467 .
9. A. Sayari, Chem. Mater., 1996, 8, 1840.
10. M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 1996,100, 9906.
11. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39, 63.
12. IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry , Pure Appl. Chem. 1972, 31, 578.
13. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao, Angew., Chem., 2003, 115 , 3254.
14. A. E. Garcia – Bennett, S. Williamsin, P. A. Wright and I. J. Shannon, J. Meter. Chem, 2002, 12, 3533.
15. A. Vinu, V. Murugesan and M. Hartmann, Chem. Meter., 2003, 15, 1385.
16. H. P. Lin, C. Y Tang and C. Y. Lin, J. Chin. Chem. Soc., 2002, 49, 981.
17. V. Alfredsson and M. W. Anderson, Chem. Mater., 1996, 8, 1141.
18. H. P. Lin and C. Y. Mou, Acc. Chem. Rev., 2002, 35, 927.
19. Q. Huo, D. I. Margolese and G. D. Stucky, Chem. Mater., 1996, 8, 1147.
20. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson and A. Monnier, Chem. Mater., 2001, 13, 2247.
21. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. - Uk Kwon, O. Terasaki, S. – Eon. Park and G. D. Stucky, J. Phys. Chem. B., 2002, 106, 2552.
22. Z. Zhang, Y. Han, F. S. Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu, Ze Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao and Y. Wei, J. Am. Chem. Soc., 2001, 123, 5014.
23. A. Bhaumik and S. Inagaki, J. Am. Chem. Soc., 2001, 123, 691.
24. Y. Han, S. Wu, Y. Sun, D. Li and F. S. Xiao, Chem. Mater. , 2002, 14, 1144.
25. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and F. S. Xiao, Angew. Chem. Int. Ed., 2001, 7, 1258.
26. Y. Han, F.S. Xiao, S. Wu, Y. Sun, X. Meng, D. Li amd S. Lin, J. Phys. Chem. B., 2001, 105, 7963
27. D. Margolese, J. A, Melero, C. Christiansen, B. F. Chemelka and G. D.Stukey, Chem. Mater., 2002, 12, 2448.
28. A. Walcarius, M. Etienne and B. Lebeau, Chem. Mater., 2003, 15, 2161.
29. T. Yokoi, H. Yoshitake and T. Tatsumi, J. Mater. Chem., 2004, 14 , 951.
30. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming, Nature. , 2000, 48, 289.
31. E. B. Erlein, Angew. Chem. Int. Ed., 2003, 42, 614.
32. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu, Angew. Chem. Int. Ed. 2003, 42, 413.
33. F. Noll, M. Sumper and N. Hampp, Nano. Lett., 2002, 2, 91.
34. W. Wang, S. Xie, W. Zhou, A. Sayari, Chem. Mater, 2004, 16, 1756-1762.
35. Y. Han, S. Wu, Y. Sun, D. Li and F. S. Xiao, Chem. Mater., 2002, 14, 1144.
36. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and F.S. Xiao, Angew. Chem. Int. Ed., 2001, 7, 1258.
37. Y. Han, F. S. Xiao, S. Wu, Y. Sun, X. Meng, D. Li amd S. Lin, J. Phys. Chem. B, 2001, 105, 7963
38. T. F. Todros, Surfactants, Academic Press: London, 1984.
39. Stockholm and Lund, Surfactant and Polymer in Aqueous, 1997
40. J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
41. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 1264
42. R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
43. O. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier,P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, and G. D. Stukey .Chem. Mater., 1994, 6, 1176.
44. http://www.lsbu.ac.uk/water/hygel.html
45. T. Kyotani, Carbon, 2000, 38, 269.
46. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater., 1996, 8, 454.
47. W. Lu, D. D. L. Chung, Carbon, 1997, 35, 427.
48. Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater., 2000, 12, 62.
49. S. Han, K. Sohn, T. Hyeon, Chem. Mater., 2000, 12, 3337.
50. C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc., 1999, 146, 3639.
51. J. H. Knox, B. Kaur, G. R. Millward, J. Chromatogr., 1986, 352, 3.
52. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater., 2001, 13, 677.
53. S. H. Joo, S.J. Choi, Ilwhan Oh, J. Kwak, Z. Liu, O. Terasaki and R. Ryoo, Nature, 2001, 412, 169.
54. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
55. H. P. Lin, C. Y. Chang-Chien, C. Y. Tang, C. Y. Lin, MICROPOROUS AND MESOPOROUS MATERIALS, 2006, 93, 344-348.
56. C. H. Hsu, H. P. Lin, C. Y. Tang and C. Y. Lin, Materials Chemistry and Physics, 2006, 100, 112-116.
57. A. J. Bard, L. R. Faulkner, Electrochemical Method, John Wiley & Sons. Inc., 2001
58. T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, J. Electrochem. Soc., 1989, 138, 2334-2342.
59. T. A. Zawodzinski, Jr. C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. Springer, S. Gottesfeld, J. Electrochem. Soc., 1993, 140, 1041-1047.
60. A. Oedegaard, C. Hebling, A. Schmitz, S. Moller-Holst, R. Tunold, J. Power Sources, 2004, 127, 187-196.
61. B. E. Conway, Electrochemical Supercapacitors, Kluwer-Plenum, New-York, 1999.
62. J. G. D. Haenen, W. Visscher and E. Barendrecht, Journal Applied Electrochem., 1985, 15, 29-38.
63. A. Burke, Journal of Power Sources, 2000, 91, 37-50.
64. 黃煜騰、鄭耀宗、吳龍暉,燃料電池使用台灣地區生質氣體能源的潛力分析,八十二年能源經濟學術研討會論文集, 281~301
65. J. Giner and C. Hunter, J. Electrochem. Soc., 1969, 116, 1124.
66. O. Stonehart, J. Appl. Electrochem., 1992, 22, 995
67. E. A Ticianelli, C. R. Derouin,A. Redondo, and S. Srinivasan, J. Electrochemical. Soc., 1998, 135, 2209
68. K. Scott, W.M. Taama, P. Argyropoulos, J. Power Sources, 1999, 79, 43.
69. E. A Ticianelli, C. R. Derouin,A. Redondo, and S. Srinivasan, J. Electrochemical. Soc., 1998, 135, 2209.
70. A. J. Appleby, and F. R. Folkes, Fuel Cell Handbook, Van Nostrand Reinhold, New York, 1989.
71. Z. Ogumi, T. Kuroe and Z. I. Takehara, J. Electrochem. Soc., 1985, 132, 2601.
72. H. Dohle, J. Divisek, R. Jung, Journal of Power Sources, 2000, 86 ,469–477.
73. T. E. Springer, D. Raistrick, J. Electrohem. Soc., 1989, 136, 1594.
74. T. Freelink, W. Visscher, and J.A.R.van Veen, Surf. Sci., 1995, 335, 353.
75. D. H. Jung, C. H. Lee, and C. S. Kim, J. Power Sources, 1998, 17, 169.
76. Harriott, P.; Chang, A. T. Y., AICHE Journal, 1988, 34, 1656-1662.
77. S. Brunauer, L. S. Deming, W. S. Deming and E. T. Teller, J. Am. Chem. Soc., 1940, 62, 1723.
78. G. Ertl, H. Knozinger and J. Weitkamp, Handbook of Heterogeneous Catalysis, 1997, Vol 3, 1508.
79. Turkevich, J.; Hillier, J.; Stevenson, P. C. Discuss. Faraday Soc., 1951, 11, 55.
80. Frens, G., Nature: (London), Phys. Sci., 1973, 241, 20-22.
81. R. Brayner, T. Coradin, M. J. Vaulay, C. Mangeney, J. Livage, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 256, 191–197.
82. Y. S. Chi, H. P. Lin, C. Y. Mou, Applied Catalysis A: General, 2005, 284, 199–206
83. J. H. Liu, A. Q. Wang, Y. S. Chi, H. P. Lin, and C. Y. Mou, J. Phys. Chem. B, 2005, 109, 40-43.
84. M. Comotti, W. C. Li, B. Spliethoff, and F. Schuth, J. AM. CHEM. SOC., 2006, 128, 917-924.
85. B. Kim, S.L. Tripp, A. Wei, J. Am. Chem. Soc., 2001, 123, 7955.
86. E. Fort, C. Ricolleau, J. Sau-Pueyo, NanoLetters, 2003, 3, 65.
87. D. Eck, C.A. Helm, N.J. Wagner, K.A. Vaynberg, Langmuir, 2001, 17, 957.
88. O. Seitz, M.M. Chehimi, E. Cabet-Deliry, S. Truong, N. Felidj, C. Perruchot, S.J. Greaves, J.F. Watts, Colloids Surf. A, 2003, 218, 225.
89. U. Ciesla, S. Schacht, G. D. Stucky, K. K.Unger, F. Schuth, Angew. Chem. Int. Ed. Engl., 1996, 35, 541.
90. S. Link, Z. L. Wang, M. A. El-Sayed, J. Phys. Chem. B, 1999, 103, 3529.
91. I. Lee, S. W. Han, K. Kim, Chem. Commun., 2001, 1782.
92. H. Yang, Y. Yan, Y. Liu, F. Zhang, R. Zhang, Y. Meng, M. Li, S. Xie, B. Tu, and D. Zhao, J. Phys. Chem. B, 2004, 108, 17320-17328.
93. A. H. Lu, W. C. Li, N. Matoussevitch, B. Spliethoff, H. Bonnemann, and F. Schuth, Chem. Commun., 2005, 98–100.
94. J. N. Wang, L. Zhang, J. J. Niu, F. Yu, M. S. Zhao, Y. Z. Zhao, H. Chang, and C. Pak, Chem. Mater., 2007, 19, 453-459.
95. M. Sevilla and A. B. Fuertes, Carbon, 2006, 44, 468-474.
96. T. W. Kim, I. S. Park, and R. Ryoo, Angew. Chem. Int. Ed., 2003, 42, 4375–4379
97. T. Hyeon, S. Han, Y. E. Sung, K.W. Park, and Y. W. Kim, Angew. Chem. Int. Ed., 2003, 42, 4352-4356.
98. C. Bock, C. Paquet, M. Couillard, G. A. Botton, and B. R. MacDougall, J. Am. Chem. Soc., 2004, 126(25), 8028 -8037.
99. L. S. Sarma, T. D. Lin, Y. W. Tsai, J. M. Chen and B. J. Hwang, Journal of Power Sources, 2005, 139, 44-54.
100. F. Su, J. Zeng, Y. Yu, L. Lu, J. Y. Lee, X.S. Zhao, Carbon, 2005, 43, 2366–2373.
101. F. Su, J. Zeng, X. Bao, Y. Yu, J. Y. Lee, and X. S. Zhao, Chem.Mater., 2005, 17, 3960–3967.
102. Y. H. Lee, G. Lee, J. H. Shim, S. Hwang, J. Kwak, K. Lee, H. Song, and J. T. Park, Chem. Mater. 2006, 18, 4209-4211.
103. Y. L. Hsin, K. C. Hwang, and C. T. Yeh, J. AM. CHEM. SOC. C, 2007