簡易檢索 / 詳目顯示

研究生: 陳俊碩
Chen, Chun-Shuo
論文名稱: 錫氯錯合物對電沉積硫化亞錫薄膜的研究
Study of tin-polychloride complexes in electrodepositing tin sulfide thin film
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 103
中文關鍵詞: 電沉積氯離子亞錫-氯錯合物硫化亞錫能隙晶格常數
外文關鍵詞: Electrodeposition, tin-chlride complexes, tin monosulfide, chloride ion, band-gap, lattice constant, absorption edge
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在沉積硫化亞錫薄膜中,以電化學法最為方便,而利用不同的氯離子濃度,產生不同錫氯錯合物的分佈,讓我們可以沉積不同原子比例的薄膜,以及其多變的能隙和吸收光譜是本研究的重點所在。
    本研究利用電沉積的方法,在銦錫氧化物參雜的導電玻璃上製備硫化亞錫的薄膜,實驗變因包括:電沉積的電位、氯離子的濃度、電鍍時間以及亞錫離子的濃度來得到不同原子比例的薄膜並且測量其光學和物理性質。
    因為在不同濃度氯離子的溶液中,亞錫離子和氯離子的錯合物分佈比例不同,上述的現象也可以在掃描循環伏安法以及紫外以及可見光光譜測量觀測到。而因為這個現象使得硫化亞錫的相結構、組成及表面樣貌不同,上述性質分別透過X光繞射儀、X光能譜散佈分析儀以及掃描式電子顯微鏡進行分析。在X光繞射圖譜分析上,硫化亞錫的特徵峰幾乎相同,只是強度會隨著上述的變因而有所不同,透過X光能譜散佈分析儀我們發現薄膜的原子比例有不同,導致特徵峰強度有所差異而且表面樣貌也不相同。而經過公式的計算我們可以發現,表面型態差異可能和原子的晶格常數有關聯,隨著硫原子比例的增加,晶格常數a和b逐漸變小,這使得薄膜表面型態發生改變。
    光學性質方面,我們用紫外與可見和近紅外光光譜儀來測量吸收度及反射度。不同原子比例的薄膜的吸光邊緣不同,而經過公式計算出來的能隙大小也不同,隨著硫原子的比例增加,吸光邊緣有藍位移的趨勢而能隙有增加的趨勢,所以我們可以藉由不同的電鍍條件,電鍍出不同原子比例的硫化亞錫薄膜,因為有不同的吸光邊緣可以吸收不同區段的太陽光以及不同的能隙可以提供異質接面的太陽能薄膜的應用。

    In depositing tin sulfide thin film, the electrodeposition method is most convenient. The critical idea of this research is under different concentration of chloride, producing various distribution of tin-chloride complexes which can deposit films with different atomic ratios of tin and sulfur and the band-gap and absorption of these films is variable.
    This study demonstrates a simple electrodeposition method to fabricate the SnS thin film on an ITO coated glass (SnS/ITO) and the parameters include: deposition potentials and times in electrodepostion, concentrations of chloride and stannous ion. Controlling above parameters to form various atomic ratios of SnS thin film with optical and physic properties are variable.
    As in different concentrations of chloride solution, the distribution of tin-chloride complexes is various which can be observed by cyclic voltammetry (CV) and UV-VIS spectrometer measurement. On account of this factor, the phase structures, compositions and morphologies of films are diverse, and these properties are determined by X-ray diffraction, energy dispersive spectrometer and scanning electron microscope, respectively. X-ray diffraction shows the peaks of sample are almost alike, but the intensity of the peaks alters when the above parameters change. Due to the EDS, discovering the atomic ratios of films are different which affects the intensity of peaks and morphologies of films. Depending on formulas of calculating lattice constant, when atomic ratio alters, the lattice constant changes and the morphologies also changes.
    Investigating optical properties, the absorbance and reflectance of films can be observed by UV-VIS-NIR spectrometer. The films have different atomic ratios which produces various edges of absorption spectra. When the atomic ratio of sulfur is ascending, the edge of absorption is blue-shift and the band-gap calculated from equations is increasing. So, under different electrodeposition conditions, we can tune the atomic ratio of SnS films and that let us design films which can absorb different sections of solar spectrum. The various band-gaps can be applied in heterojunction solar structures.

    Chinese abstract I Abstract II Acknowledgement IV Contents V List of figures IX List of tables XVI Chapter 1 Introduction 1 1.1 Background of solar cells 1 1.1.1 The photovoltaic effect and brief history of solar cells 1 1.1.2 How does a solar cell work? 2 1.1.3 Solar spectrum 4 1.1.4 Thin film solar cell 5 Chapter 2 Literature review and principles 8 2.1 Fundamentals of Tin Sulfide thin film 8 2.1.1 The chalcogenide thin film 8 2.1.2 Introduction of Tin Sulfide (SnS) 8 2.2 IV-VI compound semiconductor thin film manufacturing methods 11 2.2.1 Physical Vapor Deposition (PVD) 11 2.2.2 Sputtering 12 2.2.3 Chemical Bath Deposition (CBD) 13 2.2.4 Chemical Vapor Deposition (CVD) 14 2.2.5 Electrochemical Deposition (ED) 15 2.3 Experimental principles 16 2.3.1 Co-deposition 16 2.3.2 EH – pH diagram (Pourbaix diagram) 17 2.4 Instrumental principles 20 2.4.1 Chronoamperometry (CA) 20 2.4.2 Cyclic voltammetry (CV) 21 2.4.3 X-ray diffraction(XRD) 23 2.4.4 Scanning electron microscope (SEM) 23 2.4.5 Energy-dispersive X-ray spectroscopy (EDS) 24 2.5 Study description and motivation 26 Chapter 3 Methods and Steps 28 3.1 Chemicals and instruments 28 3.2 Experimental methods and steps 29 3.2.1 Setup 29 3.2.2 Electroplating bath preparation 29 3.2.3 SnS electrochemical deposition 30 3.2.4 Characterization 30 (A) XRD 30 (B) SEM and EDS 30 (C) UV-VIS-NIR Spectrophotometer 31 (D) UV-VIS Spectrophotometer 31 Chapter 4 Results and Discussion 32 4.1 Finding deposition potentials for stannous and thiosulfate ions 32 4.1.1 CV diagrams and UV spectra of stannous ion in different concentration of HCl 32 4.1.2 CV diagrams of thiosulfate ion 39 4.1.3 CV diagrams of mixed solution with thiosulfate and stannous ion 42 4.2 Electrochemical deposition of SnS thin film with the concentration ratio of stannous and thiosulfate ion is the same (0.1 M) 46 4.2.1 Depositing potentials of SnS thin film 46 4.2.2 Absorption diagrams and the appearances of SnS thin films at different potentials 47 4.2.3 XRD patterns of SnS thin film at different potentials 49 4.2.4 (111) intensities and atomic ratio at different potentials of SnS thin film at different potentials 51 4.2.5 Absorption coefficients of SnS thin films at different deposition potentials 53 4.2.6 Band-gap diagrams of SnS thin film at different potentials 54 4.2.7 Morphological pictures of SnS thin film at different potentials 56 4.2.8 Deposition times of SnS thin film 58 4.2.9 XRD patterns of SnS thin film in different times 59 4.2.10 (111) intensities and atomic ratio at different potentials of SnS thin film in different times 60 4.2.11 Absorption diagrams and the appearances of SnS thin film at different potentials 61 4.2.12 Band-gap diagrams of SnS thin film in different deposition times 64 4.2.13 Absorption coefficients of SnS thin films in different deposition times 66 4.2.14 Thickness diagrams of SnS thin films in different times 67 4.2.15 Morphological pictures of SnS thin films in different times 68 4.3 Electrochemical deposition of SnS thin film with the concentration ratio of stannous and thiosulfate is one half (0.05 M over 0.1 M) 72 4.3.1 Depositing potentials of SnS thin film 72 4.3.2 XRD patterns of SnS thin film at different potentials 73 4.3.3 (111) intensities and atomic ratios of SnS thin films at different deposition potentials 74 4.3.4 Band-gap diagrams of SnS thin films 75 4.3.5 Morphological pictures of SnS thin films at different potentials 76 4.3.6 Deposition times of SnS thin film 78 4.3.7 XRD patterns of SnS thin film in different times 79 4.3.8 (111) intensities and atomic ratios of SnS thin films in different deposition times 80 4.3.9 Band-gap diagrams of SnS thin films in different deposition times 81 4.3.10 Morphological pictures of SnS thin films in different times 83 4.3.11 Thickness diagrams of SnS thin films in different times 86 Chapter 5 Conclusion 88 References 92

    1. Nelson, J., The physics of solar cells. 2003, Imperial College Press, London, UK.
    2. Bacquerel, E. On electron effects under the influence of solar radiation. Comptes Rendues 9: 561
    3. Adams, W.G., and Day, R.E. The action of light on selenium. Proceedings of the Royal Society, A25: 113.
    4. Chapin D.M., Fuller C.S., and Pearson G.L. A new silicon p–n junction photo cell for converting solar radiation into electrical power. Journal of Applied Physics, 1954, 25: 676.
    5. Rath, J.K. Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications. Solar Energy Materials and Solar Cells, 2003. 76: 431.
    6. Comber, P.G.L., and Spear, W.E. Substitutional doping of amorphous silicon. Solid State Communications, 1975. 17: 1193.
    7. Chopra, K.L., Paulson, P.D., and Dutta, V. Thin-film solar cells: An overview. Progress in Photovoltaics, 2004. 12: 69.
    8. Chung, I.L., He, B. J., Chang, R. P., and Kanatzidis, M. G., All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012. 485: 486.
    9. http://www.postech.ac.kr/ce/lamp/research6.html
    10. http://www.dur.ac.uk/cmp/research/groups/aim/themes/solarcellsprinciple/
    11. Würfel, P., Physics of Solar Cells: From Principles to New Concepts. 2007. Wily, Weinheim, Germany.
    12. Pagliaro, M., Palmisano, G., and Ciriminna, R. Flexible Solar Cells. 2008. Wiley Weinheim, Germany.
    13. Pagliaro, M., Palmisano, G., and Ciriminna, R. Flexible Solar Cells. 2008. Wiley Weinheim, Germany.
    14. Sugaya, T.K., Furue, S. Y., Amano, T., Mori, M., and Niki, S. Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs. Solar Energy Materials and Solar Cells, 2011. 95: 163.
    15. Lincot, D.G., Taunier, J. F. Guimard, D., Chaumont, J., Roussel, O., Ramdani, O., Hubert, C., Fauvarque, J. P., Bodereau, N., Parissi, L., Panheleux, P., Fanouillere, P., Naghavi, N., Grand, P. P., Benfarah, M., Mogensen, P., and Kerrec, O. Chalcopyrite thin film solar cells by electrodeposition. Solar Energy, 2004. 77: 725.
    16. Wu, X.Z. High-efficiency polycrystalline CdTe thin-film solar cells. Solar Energy, 2004. 77: 803.
    17. Mane, R.S. and Lokhande, C.D. Chemical deposition method for metal chalcogenide thin films. Materials Chemistry and Physics, 2000. 65: 1.
    18. Herzenberg, R. Review Mineral, 1932. 4: 33.
    19. Jiang, T., and Ozin, G.A. New directions in tin sulfide materials chemistry. Journal of Materials Chemistry, 1998. 8: 1099.
    20. Engelken, R.D., Low Temperature Chemical Precipitation and Vapor Deposition of SnxS Thin Films. Journal of The Electrochemical Society, 1987. 134: 2696.
    21. Murphy, J.E.B., Norman, M. C. , Ahrenkiel, A. G. , Johnson, S. P. , Yu, J. C., Micic, P., Ellingson, O. I., and Nozik, A. J., PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. Journal of American Chemical Society, 2006. 128: 3241.
    22. Schnering H. G., and Wiedemeier H., Zeitschrift fur Kristallographie , 1981. 156: 143.
    23. Subramanian, B., Sanjeeviraja, C., and Jayachandran, M. Photoelectrochemical characteristics of brush plated tin sulfide thin films. Solar Energy Materials and Solar Cells, 2003. 79: 57.
    24. Sato, N.I., Arai, E., and Yamazaki, Y. Characterization of electrical properties and photosensitivity of SnS thin films prepared by the electrochemical deposition method. Solar Energy Materials and Solar Cells, 2005. 85: 153.
    25. Subramaniana, B., Sanjeeviraja, C., and Jayachandranb, M. Cathodic electrodeposition and analysis of SnS films for photoelectrochemical cells. Materials Chemistry and Physics, 2001. 71: 40.
    26. Ichimura, M. K.T., Onob, Y., and Araib, E. Electrochemical deposition of SnS thin films. Thin Solid Films, 2000. 361-362: 98.
    27. Mishra, K.R., Weiss, K., Murley, A., Engelken, M., Slayton, R. D.M., and Mccloud, H. E. Electrodeposition and Characterization of SnS Thin-Films. Journal of the Electrochemical Society, 1989. 136: 1915.
    28. Mathews, N.R.A., Cortes-Jacome, H. B. M., Angeles-Chavez, M. A.C., and Toledo-Antonio, J. A. Tin Sulfide Thin Films by Pulse Electrodeposition: Structural, Morphological, and Optical Properties. Journal of the Electrochemical Society, 2010. 157: H337.
    29. Loferski, J. J.Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion. Journal of Applied Physics, 1956. 27: 777.
    30. Ogah, O.E.R., Zoppi, K. R., Forbes, I., and Miles, R. W. Annealing studies and electrical properties of SnS-based solar cells. Thin Solid Films, 2011. 519: 7425.
    31. Jiang, F.S., Gao, H. L., Liu, B., Lin, L., and Shen, Z. Preparation and properties of SnS film grown by two-stage process. Applied Surface Science, 2011. 257: 4901.
    32. Devika, M.R., Ramesh, N. K., Ganesan, K., Gunasekhar, K. R., Gopal, E. S. R., and Reddy, K. T. R. Thickness effect on the physical properties of evaporated SnS films. Journal of the Electrochemical Society, 2007. 154: H67.
    33. Louise S., Price, I.P.P., Amanda M. E., and Clark, J. H. Atmospheric Pressure Chemical Vapor Deposition of Tin. Chemical Material, 1999. 11: 1792.
    34. Parkin, I.P.P., Hibbert, L. S., and Molloy, T. G. The first single source deposition of tin sulfide coatings on glass: aerosol-assisted chemical vapour deposition using [Sn(SCH2CH2S)2]. Journal of Materials Chemistry, 2001. 11: 1486.
    35. Brownson, J.R.G., Cécile Larramona, Gerardo Levy-Clement, and Claude, Chemistry of delta-SnS: New Tin Monosulfide Polymorph Thin Films from Galvanostatic Electrodeposition. 2007. 6: 587.
    36. K. Takeuchia, Araia, E., and Yamazakib, Y. SnS thin films fabricated by pulsed and normal electrodeposition. Solar Energy Materials and Solar Cells, 2003. 75: 427.
    37. Gao, C.S., Wu, H. L., Zhang, T. R., and Jiang, F., Preparation and the growth mechanism of zinc blende structure tin sulfide films by successive ionic layer adsorption and reaction. Journal of Crystal Growth, 2010. 312: 3009.
    38. Akkari, A., Effect of Deposition Time on Physical Properties of Nanocrystallized SnS Zinc Blend Thin Films Grown by Chemical Bath Deposition. Advanced Materials Research, 2011. 324: 101.
    39. Avellaneda, D., Nair, M.T.S., and Nair, P.K. Polymorphic tin sulfide thin films of zinc blende and orthorhombic structures by chemical deposition. Journal of the Electrochemical Society, 2008. 155: D517.
    40. Gao, C., Shen, H.L., and Sun, L. Preparation and properties of zinc blende and orthorhombic SnS films by chemical bath deposition. Applied Surface Science, 2011. 257: 6750.
    41. http://wwwold.ece.utep.edu/research/webedl/cdte/Fabrication/index.htm
    42. http://en.wikipedia.org/wiki/File:Sputtering.gif
    43. http://www.ncpre.iitb.ac.in/page.php?pageid=49&pgtitle=CIGS-Thin-Film-
    Photovoltaic
    44. http://cnx.org/content/m25495/latest/
    45. VanLoon, G., and Duffy, S. Environmental Chemistry - a global perspective. 2011, Oxford University Press, London, UK.
    46. Takeno, N. Atlas of Eh-pH diagrams. 2005. 243.
    47. Douglas, A., Skoog, F., Holler, J., and Crouch, S. R. Principles of Instrumetal Analysis. 2006, Thomson Brooks/Cole, California, USA.
    48. Daniel, C. H. Quantitative Chemical Analysis. 2006, W.H. Freeman and Company, Ohio , USA.
    49. Goldstein, J. I. Scanning Electron Microscopy aod X-ray Microalaysis. 2003, Plenum Press, New York , USA.
    50. House, C.I., and Kelsall, G.H. Potential—pH diagrams for the Sn/H2O-Cl system. Electrochimica Acta, 1984. 29: 1459.
    51. Cotton, E. A., and Wilkinson, G. Advanced Inorganic Chemistry. 1988, Wiley, New York, United States.
    52. Haring, R.C., and Walton, J.H. The autoxidation of stannous chloride III The photochemical reaction. Journal of Physical Chemistry, 1933. 37: 375.
    53. Pankove, J. I. Optical Processes in Semiconductors. 1971, Pentice-Hall, New Jersey, USA.
    54. He, A.Q.L., and Ivey, Q. Electrodeposition of tin: a simple approach. Journal of Materials Science-Materials in Electronics, 2008. 19: 553.

    下載圖示 校內:2018-07-25公開
    校外:2018-07-25公開
    QR CODE