| 研究生: |
廖彥凱 Liao, Yen-Kai |
|---|---|
| 論文名稱: |
動態取像下之特徵辨識於自動檢測系統之研究 Study on the Characteristic Recognition in Fly Vision for Automatic Inspection Systems |
| 指導教授: |
田思齊
Tien, Szu-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 自動光學檢測 、區域二元模式(LBP) 、卡曼濾波器 |
| 外文關鍵詞: | Automated Optical Inspection, Local Binary Pattern(LBP), Kalman Filter |
| 相關次數: | 點閱:124 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究目的在於使用動態取像的方式提升自動光學檢測系統的檢測效能。藉由動態取像的方式,雖然可以避免檢測過程中發生停頓,但會造成相機與檢測物存在相對速度,使拍攝影像可能有模糊的現象發生。因此,本論文中使用反饋與前饋控制,且透過卡曼濾波器對檢測物進行位置預測,以提升追蹤待測物的性能並減少模糊的可能。由實驗結果可發現,使用區域二元模式(LBP)擷取影像的紋理特徵,可以比擷取外型特徵擁有更高的可靠度,因此,在影像辨識上先使用區域二元模式擷取影像的紋理特徵再透過樣本比對法進行影像辨識。本論文以字元辨識為例,證實運用所建議之動態檢測方法,當追蹤位置與速度誤差進入穩態階段後再擷取影像進行辨識,字元辨識皆能準確辨識出影像字元。
The main goal of this research is to improve the efficiency of automatic optical inspection(AOI) systems by conducting the inspection process in fly vision. Although conducting the inspection process in fly vision can avoid the pause of inspected objects, there may exist relative velocity between the camera and object and then make images fuzzy. Therefore, besides feedforward and feedback control is adopted, kalman filter is also utilized to predict the position of inspected object to enhance the tracking performance and reduce problems of fuzzy images. Experimental results show that, compared with contour-matching method, local binary pattern(LBP) can reveal the textural characteristic of detected objects and is more reliable for characteristic recognition. Therefore, during the image processing, LBP is utilized and followed by template-matching process for characteristic recognition. In this research, a character recognition example is used to verify that, with the proposed inspection process in fly vision,precise character recognition can be achieved if the image processing is conducted when the tracking position and velocity errors are in steady- state.
[1] R.Aidan Martin and Neil Hammerschlag. Marine predator-prey contests: Ambush and speed versus vigilance and agility. Marine Biology Research, pages 90-94.Taylor and Francis, 2012.
[2] X.W. Lin. Model-fusion-based precision motion control of linear motors. Master's thesis, National Cheng Kung University, 2013.
[3] Roland T. Chin and Charles A. Harlow. Automated visual inspection: A survey.IEEE Transactions on Pattern Analysis and Machine Intelligence, PAM1-4(6):557-573, 1982.
[4] E.R DAVIES. Comouter and Machine Vision : Theory,Algorithms,Practicalities.Academic Press,USA, 2012.
[5] Anuwat Jangwanitlert Somyot Kaitwanidvilai and Anakkapon Saenthon. Smart"on the fly vision" for smart manufacturing inspection system. Proceedings of the IASTED Asian Conference on Power and Energy Systems, AsiaPES, pages 232-235.Acta Press, 2012.
[6] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop,pages 674-679, 1981.
[7] M. Harwood D. Ojala, T. Pietikainen. Performance evaluation of texture measures with classi cation based on kullback discrimination of distributions. Proceedings of
the 12th IAPR International Conference on Pattern Recognition, 1:582-585, 1994.
[8] K.-M. Lee and Y. Qian. A vision-guided fuzzy logic control system for dynamic pursuit of a moving target. Microprocessors and Microsystems, pages 571-580. Acta
Press, 1998.
[9] A.P. Klimley. The Predatory Behavior of the White Shark. Sigma Xi, The Scienti c Research Society, 1994.
[10] P. M. Sharkey and D. W. Murray. Delays versus performance of visually guided.IEE Proceedings on Control Theory Applications, 143:436-447, 1996.
[11] E. Brookner. Tracking and Kalman Filtering Made Easy. John Wiley and Sons,New York, 1998.
[12] W.C. Hsu. Vision-based position prediction and classi cation of moving objects.
Master's thesis, National Cheng Kung University, 2005.
[13] P. Swaminathan T. Mahalakshmi, R. Muthaiah. An overview of template matching technique in image processing. Engineering and Technology, 4(24):5469-5473, 2012.
[14] Christopher J.C. Burges. A tutorial on support vector machines for pattern recog-nition. Data Min. Knowl. Discov., 2:121-1367, 1998.
[15] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Upper Saddle River,2008.
[16] N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans.Sys., Man., 9(1):62-66, 1979.
[17] Xia Huadong and Liao Dongchu. The study of license plate character segmentation algorithm based on vetical projection. IEEE Computer Society, pages 4583-4586.
International Conference on Consumer Electronics, 2011.
[18] Mohammed Ali Qatran. Template matching method for recognition musnad char-acters based on correlation analysis. ACIT'2011 Proceedings, 2011.
[19] Jianhong Xie. Optical character recognition based on least square support vector machine. 3rd International Symposium on Intelligent Information Technology
Application, 1:626-629, 2009.
[20] K. Fukushima. Character recognition with neural networks. Neurocomputing,4(5):221-233, 1992.
[21] Jonathan Y. Stein. Digital Signal Processing: A Computer Science Perspective.John Wiley and Sons, USA, 2000.
[22] T. Umeno and Y. Hori. Robust speed control of dc servomotors using modern two
degrees-of-freedom controller design. IEEE Transactions on Industrial Electronics,38(5):363-368, 1991.
[23] U.A. Bakshi and V. Bakshi. Modern Control Theory. Technical Publications, 2009.
[24] R. H. Brown, S. C. Schneider, and M. G. Mulligan. Analysis of algorithms for
velocity estimation from discrete position versus time data. IEEE Transactions on Industrial Electronics, 39(1):11-19, 1992.
[25] Y.J. Li. Precision motion control of linear motor with nonlinear friction phenomena compensation. Master's thesis, National Cheng Kung University, 2010.
[26] K. Astrom and T. Hagglund. PID Controller: Theory, Design and Tuning. Instrument Society of America, USA, 1995.
[27] Rudolph Emil Kalman. A new approach to linear ltering and prediction problems.Transactions of the ASME{Journal of Basic Engineering, 82(Series D):35-45, 1960.
[28] Greg Welch and Gary Bishop. An introduction to the kalman lter. Department of Computer Science University of North Carolina at Chapel Hill, 2006.
[29] Robert Grover Brown. Introduction to Random Signals and Applied Kalman Filtering: with Matlab Exercises and Solutions. John Wiley and Sons, 1997.
[30] G. M. Clayton, S.C. Tien, K. K. Leang, Q. Zou, and S. Devasia. A review of feedforward control approaches in nanopositioning for high-speed spm. Journal of
Dynamic Systems, Measurement, and Control, 131(6):061101-061101, 2009.
[31] K. K. Leang, Zou Qingze, and S. Devasia. Feedforward control of piezoactuators in
atomic force microscope systems. Control Systems, IEEE, 29(1):70-82, 2009.
[32] K. Ogata. Modern Control Engineering. Prentice-Hall,ING, 1990.