| 研究生: |
許友源 Khosasi, Daniel Harta |
|---|---|
| 論文名稱: |
堆疊單層石墨烯的光導特性 Photoconductivity of Stacked Monolayer Graphene |
| 指導教授: |
曾永華
Tzeng, Yon-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 石墨烯 、鑽石 、光響應 、電漿輔助化學氣相沉積 、化學氣相沉積法 |
| 外文關鍵詞: | graphene, photoconductivity, diamond film, optical measurement |
| 相關次數: | 點閱:79 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯是具備良好的電、光、熱、磁、化以及機械性質,而此非常適合使用在研究新式的奈米元件。石墨烯具有很寬的吸收頻譜,但是其對於光資的吸收與轉換效率低弱。雖然石墨烯電子遷移率很好以擁有多關於電子元間的應用,但是微弱的光影響能讓石墨烯光學感測元件發展之路受到一定的限制。
本研究中的孔洞基板使用微波電漿輔助化學氣相沉積法在矽基板成長一層鑽石薄膜,而利用標準黃光微影程序定義圖形於鑽石薄膜基板,以氧電漿乾蝕刻系統來蝕刻鑽石,再使用氫氧化鉀蝕刻矽晶圓,而得到深約15-20 μm的孔洞和溝槽於鑽石薄膜基板。將準備好的孔洞和溝槽基板拿去鍍電極,使用蒸鍍機系統鍍鉻和金(Au/Cr)。此時,使用CVD熱化學氣相沉積法成長高品質連續薄膜石墨烯,將石墨烯轉移至孔洞和溝槽基板,並使用光學顯微鏡和Raman分析。
將製備好的元件於在高真空光學量測,使用不同的波長二極體雷射實驗,如:藍光(405nm)、紅光(660nm)、綠光(532nm),並探討懸浮石墨烯的光導效應,於不同的偏壓和雷射光源的功率來分析石墨烯的光電導率效應。
In this work, ultrananocrystalline diamond film is used as a pattern technology to make a cavity on silicon substrate. The low surface tension solution and substrate placement was used to prevent the graphene broken when removing the supported layer. The suspended stacked graphene was successfully fabricated from 40um length channel. Optical Microscope, Raman Spectroscopy, Scanning Electron Microscope, Electrical measurement and Optical measurement are used to analyze the stacked graphene. In the optical measurement part, under blue, red and green laser illumination, it shows a positive photoconductivity. When applying low power, the number of photons of red laser is more than blue laser makes the photoconductivity of red laser is higher than blue laser. With increasing the power, the photoconductivity of blue laser will surpass the photoconductivity of red laser and the difference will be bigger because the red laser will saturate first.
[1] Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science. 306(5696): p. 666-669. 2004.
[2] Dai, L., et al., Carbon nanomaterials for advanced energy conversion and storage. small. 8(8): p. 1130-1166. 2012.
[3] Liu, H. and D.S. Dandy, Studies on nucleation process in diamond CVD: an overview of recent developments. Diamond and related Materials. 4(10): p. 1173-1188. 1995.
[4] Mitsuda, Y., et al., The growth of diamond in microwave plasma under low pressure. Journal of materials science. 22(5): p. 1557-1562. 1987.
[5] Iijima, S., Y. Aikawa, and K. Baba, Growth of diamond particles in chemical vapor deposition. Journal of materials research. 6(07): p. 1491-1497. 1991.
[6] Ihara, M., H. Komiyama, and T. Okubo, Correlation between nucleation site density and residual diamond dust density in diamond film deposition. Applied physics letters. 65(9): p. 1192-1194. 1994.
[7] Tzeng, Y., et al., Applications of diamond films and related materials: proceedings of the First International Conference on the Applications of Diamond Films and Related Materials-ADC'91, Auburn, Alabama, USA, August 17-22, 1991. Vol. 73. 2013: Elsevier.
[8] Dennig, P.A., et al., Influence of substrate treatments on diamond thin film nucleation. Thin Solid Films. 212(1-2): p. 63-67. 1992.
[9] Dennig, P.A. and D.A. Stevenson, Influence of substrate topography on the nucleation of diamond thin films. Applied physics letters. 59(13): p. 1562-1564. 1991.
[10] Clausing, R.E., et al., Diamond and diamond-like films and coatings. Vol. 266. 2012: Springer Science & Business Media.
[11] Angus, J.C., Y. Wang, and M. Sunkara, Metastable growth of diamond and diamond-like phases. Annual Review of Materials Science. 21(1): p. 221-248. 1991.
[12] Maeda, H., et al., Nucleation and growth of diamond in a microwave plasma on substrate pretreated with non-oxide ceramic particles. Journal of crystal growth. 121(3): p. 507-515. 1992.
[13] Singh, B., et al., Effects of filament and reactor wall materials in low‐pressure chemical vapor deposition synthesis of diamond. Applied physics letters. 52(6): p. 451-452. 1988.
[14] Williams, O., Nanocrystalline diamond. Diamond and Related Materials. 20(5): p. 621-640. 2011.
[15] Ascarelli, P. and S. Fontana, Dissimilar grit-size dependence of the diamond nucleation density on substrate surface pretreatments. Applied surface science. 64(4): p. 307-311. 1993.
[16] Akhvlediani, R., et al., Nanometer rough, sub-micrometer-thick and continuous diamond chemical vapor deposition film promoted by a synergetic ultrasonic effect. Diamond and related materials. 11(3): p. 545-549. 2002.
[17] Lu, F., et al., A new type of DC arc plasma torch for low cost large area diamond deposition. Diamond and related Materials. 7(6): p. 737-741. 1998
[18] Schwander, M. and K. Partes, A review of diamond synthesis by CVD processes. Diamond and related materials. 20(9): p. 1287-1301. 2011.
[19] Kobashi, K., Diamond films: chemical vapor deposition for oriented and heteroepitaxial growth. 2010: Elsevier.
[20] Gurbuz, Y., et al., Diamond semiconductor technology for RF device applications. Solid-state electronics. 49(7): p. 1055-1070. 2005.
[21] Guan, Y.L., et al. Investigation of Nano/Microcrystalline Diamond Composite Films for Thermal Applications. in Materials Science Forum. 2009. Trans Tech Publ.
[22] Meng, X., et al., Nano-crystalline CVD diamond films deposited on cemented carbide using high current extended DC arc plasma process. Vacuum. 82(5): p. 543-546. 2008.
[23] Williams, O., et al., Growth, electronic properties and applications of nanodiamond. Diamond and Related Materials. 17(7): p. 1080-1088. 2008.
[24] Xiao, X., et al., Low temperature growth of ultrananocrystalline diamond. Journal of Applied Physics. 96(4): p. 2232-2239. 2004.
[25] Singh, V., et al., Graphene based materials: past, present and future. Progress in materials science. 56(8): p. 1178-1271. 2011.
[26] Li, X., et al., Highly conducting graphene sheets and Langmuir–Blodgett films. Nature nanotechnology. 3(9): p. 538-542. 2008.
[27] Yu, Q., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters. 93(11): p. 113103. 2008.
[28] Li, X., et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 324(5932): p. 1312-1314. 2009.
[29] Li, X., et al., Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano letters. 9(12): p. 4359-4363. 2009.
[30] Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology. 5(8): p. 574-578. 2010.
[31] Suk, J.W., et al., Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS nano. 5(9): p. 6916-6924. 2011.
[32] Lee, C.-K., et al., Monatomic chemical-vapor-deposited graphene membranes bridge a half-millimeter-scale gap. ACS nano. 8(3): p. 2336-2344. 2014.
[33] Chen, Y.-M., et al., Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors. Nanoscale. 8(6): p. 3555-3564. 2016.
[34] Winzer, T., A. Knorr, and E. Malic, Carrier multiplication in graphene. arXiv preprint arXiv:1008.1904. 2010.
[35] Jensen, S.A., et al. Hot carrier multiplication in graphene. in Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013 38th International Conference on. 2013. IEEE.
[36] Patil, V., et al., Improved photoresponse with enhanced photoelectric contribution in fully suspended graphene photodetectors. Scientific reports. 3: p. 2791. 2013.
[37] Hiao, X., Introduction to semiconductor manufacturing technology. 2000: Prentice Hall.
[38] Vandevelde, T., et al., Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition. Thin solid films. 340(1): p. 159-163. 1999.