| 研究生: |
周盈年 Chou, Ying-Nien |
|---|---|
| 論文名稱: |
氯化鐵於高分子發光元件之研究 Interfacial Modification of Anode with Iron Chloride in Polymer Light-Emitted Diode |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 氯化鐵 、高分子發光元件 、載子注入能障 |
| 外文關鍵詞: | Iron chloride, PLED, hole injection barrier |
| 相關次數: | 點閱:105 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文利用兩種不同的製程方式,分別組裝成PLED元件,皆在探討藉由不同的介面修飾方式可提升電洞注入的效能。
第一個部分將FeCl3摻混進入PEDOT:PSS溶液中,藉由便利的溶液化製程,有效的提升了PEDOT:PSS的功函數,並得到良好的PLED元件效率。其效能的觀察包含藉由單一電洞元件推算電洞注入之能障,以及利用紫外光光電子光譜量測其表面的光電子能階變化,以換算表面的功函數。為解釋其摻混的效能,以XPS進行元素分析,最後藉由UV-visible-NIR吸收光譜證實了功函數的提升來自PEDOT氧化態的產生。
第二個部分以FeCl3作為PLED元件的電洞注入層,發現其與ITO層相比,可以大幅的提升電洞注入效能,也使得元件亮度與發光效率大幅的提升。其原因來自於FeCl3所展現的高陰電性,而使ITO層的功函數產生改變,進而降低了ITO層與主動層HOMO之間的能障。此部分除了藉由單一電洞注入元件以及UPS推算能障與功函數之外,並利用XPS的元素分析,詳細的描述FeCl3層與ITO之間的作用。
In this dissertation, two different materials was used as hole transporting materials in the polymer light-emitting device (PLED) which was expected to promote the hole injection ability. The investigations included two sections as
follows.
The first section reported the treatment of PEDOT:PSS as hole-injection layer (HIL) in PLED. FeCl3(Iron Chloride) was doped into PEDOT:PSS via solution process. And this blend layer was characterized in terms of UV-vis, ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS).
The UPS spectra showed that PEDOT:PSS possessed more than 5.2 eV work function after inserting FeCl3 as a dopant. The electroluminescence efficiency of polymer light emitting diode using polyfluorene(PF) as an active layer and PEDOT:PSS: FeCl3 as HIL can be reached 7.0 cd/A, showing the slightly better performance than that using PEDOT:PSS as HIL. FeCl3 modified the ITO anode and fabricated PLED devices.
The secondary section reported that FeCl3 used as hole injection layer modified on ITO anode and fabricated PLED devices. The electroluminescence efficiency of polymer light emitting diode can be reach 6.5 cd/A, which was closed to PEDOT:PSS performance. This characteristic was result to the work function promotion of the ITO surface, came from the high electronegtivity of FeCl3. Ultilizing the hole-only devices and UPS to estimate the hole injection barrier between ITO anode and the HOMO of poltfluorene. XPS was used to realize the element binding energy with the surface structure.
1. “Electroluminescence in Organic Crystals”, M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys., 38, 2042 (1963).
2. “Organic Electroluminescent diodes”, C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
3. “Electroluminescence from polyvinylcarbazole films: 1. Carbazole cations”, R. H. Partridge, Polymers 24, 733 (1983).
4. “Light-emitting diodes based on conjugated polymers”, J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Mark, K. Mackay, R.N. Friend, P.L. Burn and A. B. Holmes, Nature, 347, 539 (1990).
5. “Visible light emission from semiconducting polymer diodes”, D. Braun and A.J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
6. A. J. Heeger and D. Braun (UNIAX), WO-B, 92, 16023 (1992).
7. “Realization of a Blue-Light-Emitting Device using Poly(p-phenylene) ”, G. Grem, G. Leditzky, B. Ulrich and G. Leising, Adv. Mater., 4, 36 (1992).
8. “Blue Electroluminescence from Poly(p-phenylene) Solubilized by Perfluoropropylation”, M. Hamaguchi, H. Sawada, J. Kyokane and K. Yoshino, Chem. Lett., 527 (1996).
9. “Identification of Emissive Interface-Related Defects in Polyfluorene-Based Light Emitting Devices”, S. Gaherith, H. G. Nothoper, U. Scherp and E. J. W. List, Jpn. J. Appl. Phys., 43, L891 (2004).
10. “Polarized White Emission from Fluorene-Based Polymer Blends”, Y. H. Yao, L. R. Kung and C. S. Hsu, Jpn. J. Appl. Phys. , 44, 7648 (2005).
11. S. A. VanSlyke, A. Pignate, D. Freeman, N. Redden, D. Waters, H. Kikuchi, T. Negishi, H. Kanno, Y. Nishio, M. Nakai, Proceeding of SID’02, p. 886, June 19-24, 2002, Boston, USA.
12. “Indium–tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance”, J. S. Kim, M. GranstrÖm. R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, J. Appl. Phys., 84, 6859 (1998).
13. “Surface preparation and characterization of indiumtin oxide substrates for organic electroluminescent devices”, S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung and C. F. Kwong, Appl. Phys. A, 68, 447 (1999).
14. “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer”, T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast, Appl. Phys. Lett., 75, 1679 (1999).
15. “Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency”, Y. Yang and A. J. Heeger, Appl. Phys. Lett. , 64, 1245 (1994).
16. “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer”, T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J.Feast, Appl. Phys. Lett. , 75, 1679 (1999).
17. “Polyquinoxaline as an excellent electron injecting material for electroluminescent device”, T. Fukuda, T. Kanbara, T. Yamamoto, K. Ishikawa, H. Takazoe, and A.Fukuda, Appl. Phys. Lett. , 68, 2346 (1996).
18. “Inverted Solution Processable OLEDs Using a Metal Oxide as an Electron Injection Contact”, Henk J.Bolink,* Eugenio Coronado, Diego Repetto ,Michele Sessolo ,Eva M.Barea ,Juan Bisquert ,Germa Garcia‐Belmonte ,Jan Prochazka and Ladislav Kavan ,Adv. Funct.Mater., 18 , 145 (2008).
19. “Polyquinoxaline as an excellent electron injecting material for electroluminescent device”, Hua‐Hsien Liao, Li‐Min Chen, Zheng Xu, Gang Li, and Yang Yang, Appl. Phys. Lett. ,92 , 173303 (2008).
20. “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide”, Toshinori Matsushima, Guang‐He Jin, and Hideyuki Murata, J. Appl. Phys., 104, 054501 (2008).
21. “White Stacked Electrophosphorescent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer”, Hiroshi Kanno, Russell J. Holmes, Yiru Sun, Stephane Kena‐Cohen, and Stephen R.Forrest, Adv. Mater. , 18, 339 (2006).
22. “A surface-emitting vacuum-deposited organic light emitting device”, V. Bulovic, P. Tian, P. E. Burrows, M. R. Gokhale, S. R. Forrest and M. E. Thompson, Appl. Phys. Lett., 70, 2954 (1997).
23. “High-efficiency inverted top-emitting polymer light-emitting diodes”, L. Hou, F. Huang, W. Zeng, J. Peng and Y. Cao, Appl. Phys. Lett., 87, 153509 (2005).
24. “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer”, T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik and W. J. Feast, Appl. Phys. Lett., 75, 1679 (1999).
25. “Emeraldine Base Polyaniline as an Alternative to Poly(3,4-ethylenedioxythiophene) as a Hole-Transporting Layer”, R. W. T. Higgins, N. A. Zaidi and A. P. Monkman, Adv. Funct. Mater., 11, 407 (2001).
26. “Study and comparison of conducting polymer hole injection layers in light emitting devices”, C. Tengstedt, A. Crispin, C. H. Hsu, C. Zhang, I. D. Park and W. R. Salaneck, Org. Electron., 6, 21 (2005).
27. “Self-Organized Gradient Hole Injection to Improve the Performance of Polymer Electroluminescent Devices”, T. W. Lee, Y. S. Chung, O. Kwon and J. J. Park, Adv. Funct. Mater., 17, 390 (2007).
28. “High Mobility Hole Transport Fluorene-Triarylamine Copolymers”, M. Redecker, D. D. C. Bradley, M. Inbasekaran, W. W. Wu and E. P. Woo, Adv. Mater., 11, 241 (1999).
29. “High-performance polymer light-emitting diodes fabricated with a polymer hole injection layer”, X. Gong, D. Moses, A. J. Heeger, S. Liu and A. K.-Y. Jen, Appl. Phys. Lett., 83, 183 (2003).
30. W. Shi, S. Fan, F. Huang, W.i Yang, R. Liu and Y. Cao, J. Mater. Chem., 16, 2387 (2006).
31. “Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes”, J. S. Kim, R. H. Friend, I. Grizzi, J. H. Burroughtes, Appl. Phys. Lett., 87, 023506 (2005).
32. “Tuning of Metal Work Functions with Self-Assembled Monolayers”, B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh and P. W. M. Blom, Adv. Mater., 17,621 (2005).
33. “Using Self-Assembling Dipole Molecules to Improve Hole Injection in Conjugated Polymers”, S. Khodabakhsh, D. Poplayvskyy, S. Heutz, J. Nelson, D. D. C. Bradley, H. Murata and T. S. Jones, Adv. Funct. Mater., 14,1205 (2004).
34. “Tailoring of self-assembled monolayer for polymer light-emitting diodes”, B. Choi, J. Rhee and H. H. Lee, Appl. Phys. Lett., 79, 2109 (2001).
35. “Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes”, H. L. Yip, S. K. Hau, N. S. Baek, H. Ma and A. K.-Y. Jen, Adv. Mater., 20,2376 (2008).
36. “Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics”, J. S. Kim, J. H. Park, J. H. Lee, J. Jo D.Y. Kim and K. Cho, Appl. Phys. Lett., 91, 112111 (2007).
37. J. X. Tang, T. Q. Li, L. S. Hung and C. S. Lee, Phys. Lett., 84, 73 (2004).
38. “Investigation of the sites of dark spots in organic light-emitting devices”, Y. -F. Liew, H. Aziz, N. -X. Hu, H. S. -O. Chan, G. Xu, and Z. Popovic, Appl. Phys. Lett., 77, 2650 (2000).
39. S. Naga, M. Tamekawa, T. Terashita, H. Okada, H. Anada and H. Onnagawa, Synth. Met., 91, 129 (1997).
40. “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode”, L. S. Hung, C. W. Tang and M. G. Mason, Appl. Phys. Lett., 70, 152 (1997).
41. T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada and M. Tsuchida, IEEE Trans. Electron. Devices, 44, 1245 (1997).
42. C. Ganzorig, K. Suga and M. Fujihira, Mater. Sci. Eng. B, 85, 140 (2001).
43. S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M.-F. Nabor, R. Schlaf, E. A. Mash and N. R. Armstrong, Appl. Phys. Lett., 74, 2324 (1998).
44. T. Mori, H. Fujikawa, S. Tokito, V. Taga, Appl. Phys. Lett., 73, 2763 (1998).
45. “Photoemission spectroscopy of LiF coated Al and Pt electrodes”, R. Schlaf, B. A. Parkinson, P. A. Lee, K. W. Nebesny, G. Jabbour, B. Kippelen, N. Peyghambarian and N. R. Armstrong, J. Appl. Phys., 84, 6729 (1998).
46. “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide”, H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. Von Seggern and M. Stoβel, J. Appl. Phys., 89, 420 (2001).
47. “Use of ionomer as an electron injecting and hole blocking material for polymer light-emitting diode”, H. -M. Lee, K. -H. Choi, D. -H. Hwang, L. -M. Do, T. Zyung, J. -W. Lee and J. -K. Park, Appl. Phys. Lett., 72, 2382 (1998).
48. “Polymer Light-Emitting Energy-Well Devices Using Single-Ion Conductors”, T. -W. Lee and O. O. Park, Adv. Mater., 13, 1274 (2001).
49. “Ultrahigh efficiency green polymer light-emitting diodes by nanoscale interface modification”, Q. Xu, J. Ouyang, Y. Yang, T. Ito and J. Kido, Appl. Phys. Lett., 83, 4695 (2003).
50. “High efficiency low operating voltage polymer light-emitting diodes with aluminum cathode”, X. Y. Deng, W. M. Lau, K. Y. Wong, K. H. Low, H. F. Chow and Y. Cao, Appl. Phys. Lett., 84, 3522 (2004).
51. “High-efficiency light-emitting diodes using neutral surfactants and aluminum cathode”, Y. -H. Niu, H. Ma, Q. Xu, and Alex K. -Y. Jen, Appl. Phys. Lett., 86, 083504 (2005).
52. “High-performance polymer light-emitting diodes utilizing modified Al cathode”, T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S, N. Hsieh and Y. S. Fu, Appl. Phys. Lett., 87, 013504 (2005).
53. “Organic oxide/Al composite cathode in efficient polymer light-emitting diodes”, T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu and C. T. Chung, Appl. Phys. Lett., 88, 113501 (2006).
54. “High-Efficiency Polymer Light-Emitting Diode via Al Interfacial Modification Using Polyurethane”, S. N. Hsieh, T. Y. Kuo, T. C. Wen, T. F. Guo and Y. L. Lee, J. J. Appl. Phys. 45, L773 (2006).
55. “Doping level and work function control in oxidative chemical vapor deposited poly (3,4-ethylenedioxythiophene)”, Sung Gap Im, Karen K. Gleason and Elsa A. Olivetti, Appl. Phys. Lett., 90, 152112 (2007).
56. “Organic Electroluminescent Devices with a Vacuum-Deposited Lewis-Acid-Doped Hole-Injecting Layer”, Jun Endo, Toshio Matsumoto and Junji Kido, Jpn. J. Appl. Phys., 41, 358 (2002).
57. F. Zhang, A. Petr, H. Peisert, M. Knupfer, and L. Dunsch, J. Phys. Chem. B, 108, 17301 (2004).
58. Andrzej P. Nowak, Monika Wilamowska and Anna Lisowska Oleksiak, J. Solid State Electrochem, 14, 263 (2010).
59. X. Crispin, S. Marciniak, W. Osikowicz, G Zotti, A. W. Denier van der Gon, F.Louwet, M. Fahlman, L. Groenendaal, F. De Schryver and W. R. Salaneck, J.Poly. Sci. B, 41, 2561 (2003).
60. “Improving organic transistor performance with Schottky contacts”, Raoul Schroeder, Leszek A. Majewski, and Martin Grell, Appl. Phys. Lett., 84, 1004 (2004)
61. “A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process”, Jinsong Huang, Gang Li and Yang Yang, Adv. Mater., 20, 415 (2008).
62. ( http://www.oled.at/produkte.html & http://www.universaldisplay.com/index.html )
63. (陳金鑫、黃孝文,OLED有機電激發光材料與元件,五南圖書2005年出版)