| 研究生: |
鐘翊珊 Chung, Yi-Shan |
|---|---|
| 論文名稱: |
二氧化碳封存機制下對岩石力學性質之影響 A study of the mechanical properties of bedding rocks exposed to CO2-rich environment |
| 指導教授: |
王建力
Wang, Chein-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 二氧化碳 、岩石 |
| 外文關鍵詞: | CO2, rock |
| 相關次數: | 點閱:95 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究主要研究儲存層中二氧化碳-岩石之間的相互關係,透過巴西圓盤試驗求得I型破裂韌度及單軸抗壓試驗了解二氧化碳對岩石的侵蝕是否會影響岩石本身的強度,另一方面透過材料分析探討二氧化碳與岩石相互反應後將以何種化學成分沉澱在岩石表面上。本研究之試驗環境有三種,分別為:未反應、常壓、70oC飽和碳酸水及高溫高壓(20MPa、70oC)的超臨界環境;本研究針對三種不同岩石:大理岩、安山岩、砂岩進行試驗。
研究結果顯示:
1. 經常壓反應後,大理岩與砂岩之抗壓強度與斷裂韌度皆下降,安山岩則沒有明顯變化。
2. 超臨界環境反應後,大理岩與砂岩之抗壓強度與斷裂韌度皆下降,安山岩則上升。
3. 大理岩經常壓與超臨界環境反應後,方解石被分解成鈣、錳氧化物與Minercordite,微結構則變得鬆散。
4. 安山岩經常壓與超臨界環境反應後生成些微之鐵輝石,微結構無明顯之變化。
5. 砂岩經常壓與超臨界環境反應後生成矽酸鹽類礦物與Sodium mica,微結構之孔洞變多。
Abstract
The aim of this study is to investigate the CO2-rock interactions in CO2 storage. This study performs the Brazilian test to obtain the level I fracture toughness and the uniaxial compression test to obtain the compressive strength of the rock samples. In addition, this study carries out the XRD and SEM analyses to confirm the presence of mineral carbonates in the CO2-rock experiments. Three types of rocks including Marble, Andesite and Sandstone are investigated in this study. Three environments including atmospheric pressure, at room temperature (25oC) without CO2 , atmospheric pressure at 70oC temperature with CO2 and supercritical (20MPa,70oC) with CO2, are carried out.
Experimental results indicate that
1. The compressive strength and fracture toughness decreases for Marble and Sandstone at atmospheric pressure condition comparing with atmospheric pressure, room temperature(25oC) without CO2 condition.
2. The compressive strength and fracture toughness decreases for Marble and Sandstone at supercritical condition, but increases only for Andesite comparing with atmospheric pressure, room temperature(25oC) without CO2 condition.
3. The Marble of calcite (CaCO3) dissolved into Calcium Manganese Oxide (CaMn3O7) and Minrecordite (CaZn(CO3)2) at atmospheric pressure condition and supercritical condition. There is a loose microscopic structure in the Marble sample.
4. The some Clinoferro silite (Fe SiO3) is present in the Andesite sample at atmospheric pressure condition and supercritical condition. There is no obvious change in the microscopic structure ,in the Marble sample.
5. The some Anorthite (CaAl2Si2O8) is present in the Sandstone at atmospheric pressure condition and supercritical condition. There is more pores present in the microscopic structure in the Sandstone sample.
參考文獻
1. 陳勇全,”套管水泥之熱傳導與破壞力學性質之研究”,國立成功大學資源工程學系碩士論文,1997。
2. 陳聖文,”岩石熱力學與力學性質之研究-以三種岩石為例”,國立成功大學資源工程學系碩士論文,1998。
3. 涂家輝,”異向性雙合成材料之破壞力學性質分析”,國立成功大學資源工程學系碩士論文,2004。
4. 張元曦,”儲氣田氣井套管水泥之應力分析”, 國立成功大學資源工程學系碩士論文,1995。
5. 范振暉、宣大衡,”以地下封存方式進行二氧化碳減量之可行性探討”, 第二屆資源工程研討會論文集,2005。
6. 翁鳳英,"二氧化碳捕捉與封存技術”,能源報導,2010。
7. 林鎮國,”二氧化碳的儲存”, 工業技術研究院鶗源與環境研究所專題報導,2007。
8. 布羅克、 庫齊格,”馴服暖化猛獸:CO2對抗記,”時報文化出版企業股份,2008。
9. 胥蕊娜、姜培學、陳文潁、趙博、吳宗鑫,”二氧化碳注入地下含水層數值研究”,中國工程熱物理學會學術會議論文,2008。
10. 谷麗冰、李治平、侯秀林,"二氧化碳驅引起儲層物性改變的實驗室研究”,石油天然氣學報,2007。
11. 王雅茹,”典型地區花崗岩風化室内模擬研究及碳滙初步估算”,桂林工學院碩士學位論文,2008。
12. 吳禮舟、王啟智、賈學明,"用人字形切槽巴西圓盤(CCNBD)確定岩石斷裂韌度及其尺度律”,岩石力學與工程學報,2004。
13. 樊鸿、張盛、王啟智,”岩石断裂韧度式樣CCNBD臨界應力强度因子的全新數值標定”,第四屆深部岩體力學與工程災害控制學術研討會論文集,2009。
14. 崔振東、劉大安、曾榮樹、周苗,”二氧化碳在砂岩透鏡體中充注封存的蓋層岩石抗斷裂性能分析”,工程地質學報,2010。
15. 曲希玉、劉立、馬瑞、胡大千、陳雪、王彦明,” C02流體對岩屑長石砂岩改造作用的實驗”,吉林大學學報,2008。
16. Busch, A., Alles, S.,Krooss,B. M., Stanjek, H.,Dewhurst. D.,” Effects of physical sorption and chemical reactions of CO2 in shaly caprocks,” Energy Procedia, Vol 1, Issue 1, pp. 3229-3235, 2009.
17. Dalkhaa, C., Okandan, D.,“Sayindere cap rock integrity during possible CO2 sequestration in Turkey,” Energy Procedia, Volume 4, pp 5350-5357,2011.
18. Hermanrud, C., Andresen, T., Eiken, O., Hansen, H., Janbu, A., Lippard, H., Bolås, H. N., Simmenes, T. H., Teige, G. M. G., Østmo, S., ” Storage of CO2 in saline aquifers – lessons learned from 10 years of injection into the Utsira Formation in the Sleipner area.” Energy Procedia, Vol.1, Issue 1 ,pp. 1997-2004, 2009.
19. Fowell, R .J. and Xu, C.,” The Use of the Cracked Brazilian Disc Geometry for Rock Fracture Investigations,” Int. J. Rock Mech. Min. Sci. & Geomech . Abstr. Vol. 31. No. 6. pp.571-579,1994.
20. Griffith, A. A., “The phenomenon of rupture and flow in solids,”Phil.Trans.R. Soc London, Series A,221,pp.163-198,1920.
21. Lin ,H., Fujii ,T., Takisawa, R., Takahashi ,T., Hashida, H.,” Experimental evaluation of interactions in supercritical CO2/water/rock minerals system under geologic CO2 sequestration conditions.” J Mater Sci 43,pp.2307–2315, 2007.
22. Gaus,I., ” Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks.” International Journal of Greenhouse Gas Control, Vol. 4, Issue 1, pp. 73-89, 2010.
23. Irwin, G. R.,” Fracture dynamics, Fracture of Metals, ” American Society of Metals, pp .147-166,1948.
24. Irwin, G. R.,” Analysis of stresses and strains near the end of a crack, ” J.Appl. Mech.,24, pp.361,1957.
25. Irwin, G. R. and Kies. J. E., ”Critical energy rate analysis of fracture strength. “Welding Journal.33.pp.193-198. 1952.
26. ISRM,”Suggested Methods for Determining Water Content, Porosity, Density, Absorption and Related Properties., ” pp.81-86,1981.
27. ISRM,” Suggested Methods for Determining Mode I Fracture Toughness Using Cracked Chevron Notched Brazilian Disc (CCNBD) Specimens., ” pp.59-64.2007.
28. Ipsen, K. H., Jacobsen, F. L., “Energy Conversion and Management,”Vol 37, Issues 6-8, June-August, pp. 1161-1166, 1996.
29. Ketzer, J. M., Iglesias, R., Einloft, S., Dullius, J., Ligabue, R., Lima, V. D., ” Water–rock–CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil.” Applied Geochemistry, Vol. 24, Issue 5, pp.760-767, 2009.
30. Jurgen, E., Hillis, S. R., ” Estimating fault stability andsustainable fluidpressures for underground storage of CO2 in porous rock.” Energy 29, pp. 1445–1456, 2004.
31. Sasaki, K., Fujii, T., Niibori, Y., Ito, T., Hashida, T., ” Numerical simulation of supercritical CO2 injection into subsurface rock masses.” Energy Conversion and Management, Vo. 49, Issue 1, pp.54-61, 2008.
32. Liu, L., Suto, Y., Bignall, G., Yamasaki, N., Hashida, T., ” CO2 injection to granite and sandstone in experimental rock/hot water systems”, Energy Conversion and Management.” Vol.44.Issue 9.June 2003. pp.1399-1410, 2002.
33. Libatskii, L. L. and Kovchik, S. E., “Fracture of discs containing cracks,” Soviet Materials Science, Vol.3, No.4, pp.334-339,1967.
34. Oikawa, Y., Takehara, T. and Tosha, T., ” Effect of CO2 Injection on Mechanical Properties of Berea Sandstone.” American Rock Mechanics Association 08-068, 2008.
35. P. Bertier, R. Swennen, B. Laenen, D. Lagrou, R. Dreesen., ” Experimental identification of CO2–water–rock interactions caused by sequestration of CO2 in Westphalian and Buntsandstein sandstones of the Campine Basin (NE-Belgium).” Journal of Geochemical Exploration, Vol. 89, Issues 1-3,pp. 10-14, 2006.
36. Wang, Q. Z., ” Stress Intensity Factors of the ISRM Suggested CCNBD Specimen Used for Mode-I Fracture Toughness Determination.” Int. J. Rock Mech. Min. Sci. Vol. 35, No. 7, pp. 977-982, 1998.
37. Rosenbauer, R. J., Koksalan, T., James, L., Palandri., ” Experimental investigation of CO2–brine–rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers.” Fuel Processing Technology, Vol. 86, Issues 14-15, pp. 1581-1597, 2005.