| 研究生: |
陳哲翰 Chen, Zhe-Han |
|---|---|
| 論文名稱: |
反式-1,4-環己二胺單體與多種二元酸酐合成聚醯亞胺高分子之物化性質之研究 The Physicochemical Property Studies of Trans-1,4-cyclohexanodiamine Polymerizing with Various Dianhydrides |
| 指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 高透明性聚醯亞胺 、聚醯胺酸 、軟性薄膜 、反式-1,4-環己二胺 |
| 外文關鍵詞: | High transparency polyimide, Polyamic acid, Soft film, Trans-1,4- cyclohexanodiamine |
| 相關次數: | 點閱:108 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一個商業用聚醯亞胺為杜邦公司所開發,其具有一定的機械性強、耐熱性、耐腐蝕性以及絕緣等良好物化性質,因此廣泛地被用於航空、化工、光電以及半導體等領域。 但其昂貴的價格,較差的可塑性以及透光性等缺點,所以難以被大量製造。近年來可彎曲式螢幕以及攜帶式裝置發展迅速,同時軟性透明薄膜基材需求大量增加,因此,此研究將朝向低成本及高軟性透及透明性聚醯亞胺的方向進行。
本研究開發出新的單體反式1,4-環己二胺(Trans-1,4- cyclohexanodiamine, trans-CHDA)的合成方法,合成與純化出純度99%的反式1,4-環己二胺 (總產率為37%),並將反式1,4-環己二胺分別與三種二元酸酐經由兩步驟反應合成出六種聚醯亞胺薄膜 (Polyimide film, PI film)。透過合作廠商以業界標準分析方法鑑定PI薄膜物性 (厚度為25 um),經由熱重分析儀、多功能光學檢測儀及拉伸儀測定,發現共聚合物PI5 [反式1,4-環己二胺+ 4,4'-(六氟異亞丙基)二鄰苯二甲酸酐 + 3,3',4,4'-聯苯四甲酸二酐] 與PI6[反式1,4-環己二胺 + 4,4'-(六氟異亞丙基)二鄰苯二甲酸酐 + 9,9-雙(3,4-二羧基苯基)芴二酐]具有高光穿透率 (88.25%; 89.22%)、高玻璃轉化溫度 (380.3 OC; 429.7 OC)、高抗拉強度 (24.0 kgf/mm2; 27.5 kgf/mm2) 以及低楊氏模數 (5391.51 Mpa; 5459.15 Mpa) 之聚醯亞胺薄膜具有優於商品 (Taimide OT-025)之PI薄膜。此開發之PI薄膜應用於配相膜、航空載具塗層、絕緣膠等多種應用,應具有一定的競爭力。
The first commercial polyimide was developed by DuPont, which shows good physicochemical properties such as strong mechanical properties, heat resistance, corrosion resistance, and insulation. It was used in aerospace, chemical, optoelectronic, and semiconductor fields; however it shows some disadvantages, such as high price, poor plasticity and light transmittance. In recent years, flexible screens and portable devices have been developed rapidly. At the same time, the demand for flexible transparent film substrates had greatly increased. Therefore, the development of low-cost and high-transparency polyimide has been becoming very important.
This study aims to develop a new synthetic process of Polyimide (PI) monomer, trans-1,4-cyclohexanediamine and with which to react with various dianhydride with less molecular interaction. Thus, to reduce the processing cost and improve its physicochemical properties. Both monomers, the modified diamine and various commercial available dianhydride with less molecular interactions, caused by the ionic-ionic and/or - stacking interaction, were used to synthesize the polyimides in this study. We have developed a synthetic and purifying method for preparing trans-1,4- cyclohexanodiamine ( trans-CHDA) with 99% purity and 37% overall yield, The purity is higher than that of commercial available trans-CHDA (95%). The diamine thus developed lack the ionic-ionic and/or - stacking interactions. The commercial available dianhydrides with more bulky functional groups or the Sp3 carbon bridge linking the two anhydrides moiety used in this study showed less intermolecular interaction also caused by the ionic-ionic and/or - stacking interactions. Therefore, trans-1,4-cyclohexanediamine and three dianhydrides were respectively reacted to synthesize six kinds of polyimide film (PI film) through a two-step reaction. The physical properties of PI film (thickness 25 um) were identified through the industry standard analysis method by a partner manufacturer, and measured by a thermogravimetric analyzer, a multi-function optical detector, and a tensile tester. It was found that PI5 polymerized from [trans-1,4-cyclohexanodiamine, + 3,3’,4,4’-biphenyltetracarboxylic dianhydride + 4, 4'-(Hexafluoroisopropylidene)diphthalic anhydride] and PI6 polymerized from [trans-1,4-cyclohexanodiamine + 9,9-Bis(3,4-dicarboxyphenyl)fluorene dianhydride + 4, 4'-(Hexafluoroisopropylidene)diphthalic anhydride] have high light transmittance (88.25%; 89.22). %), high glass transition temperature (380.3 OC; 429.7 OC), high tensile strength (24.0 kgf/mm2; 27.5 kgf/mm2) and low Young's modulus (5391.51 Mpa; 5459.15 Mpa) of polyimide film.
Based on the analysis of the PIs, it was found that the high purity diamine and the targeting commercial dianhydrides used in this studied are promising monomers to produce polyimides with high light transmittance, high glass transition temperature, high tensile strength, and low Young's modulus. These PIs show having a better physicochemical properties compared to the Pi currently used in industry. Therefore, these PIs developed in this study have the potential to be applied in a variety of applications, such as phase matching film, aviation vehicle coating, and insulating glue and so on. This study showed that a polyimide with more flexible and more transparency could obtained by modifying the structures of diamine and dianhydride with less molecular interaction. In a word, this study showed a way to develop good physicochemical properties of polyimide.
1. T.M. Bogert and R.R. Renshaw, J. Am. Chem. Soc., 1908, 30, 1140.
2. W.M. Edwards and I.M. Robinson, 1955, U.S. Pat. 2,710,853.
3. W.M. Edwards and I.M. Robinson, 1959, U.S. Pat. 2,867,609.
4. E. Radlmann, W. Schmidt and G.E. Nischk, Makromol. Chem., 1969, 130, 45.
5. R.N. Johnson, A.G. Farnham, R.A. Clendinning, W.F. Hale and e.N. Merriam, J. Polym. Sci., 1967, AIS, 2375.
6. J.G. Wirth and D.R. Heath, 1974, U.S. Pat. 3,787,364 to General Electric.
7. 黃炳剛。高熵合金熱噴塗層之高溫特性與應用機會。2003。
8. 賴建豪。LCD配向製程聚醯亞胺塗佈膜之肥邊瑕疵改善研究。2010。
9. M.1. Bessonov, M.M. Koton, V.V. Kudryavtsev, and L.A. Laius, Polyimides: Thermally Stable Polymers, 1987, 2, 1-95.
10. J.A. Kreuz, A.L. Endrey, F.P. Gay, and CE. Sroog, J. Polym. Sci., 1966, 4, 2607
11. Beck & Co.,1964, French Pat. 1,373,383; 1965, Chem. Abst, 62, 10636.
12. S.V. Vinogradova, G.L. Slonimskii, Ya.S. Vygodskii, A.A. Askadskii, A.I. Mzhel'skii, N.A. Churochkina and V.V. Korshak, Polym. Sci.USSR, 1969, 11, 3098.
13. S.V. Vinogradova, Ya.S. Vygodskii and V.V. Korshak, Polym. Sci. USSR, 1970, 12, 2254.
14. C.E. Sroog, J. Polym. Sci .. Macromol. Rev., 1976, 2, 161.
15. J. Preston and W.B. Black, Man-Made Fibers. Science and Technology, 1968, 13, 1583-1584.
16. P.C Cassidy and N.C Fawcett, Encylopedia of Chemical Technology, 1982, 18, 704-719.
17. G.W. Verbicky, Jr., Encylopedia of Polymer Science and Engineering, 1988, 12, 364-383.
18. N.A. Androva, M.1. Bessonov, L.A. Laius, and A.P. Rudakov, 1970, Polyimides: A New Class of Thermally Stable Polymers, Stamford, Connecticut:Technomic Publishing Co.
19. A. Wurtz, L iebigs Ann. Polyimides, 1854, 42, 554.
20. CD. Hurd and A.G. Prapas, J. Org. Chem., 1959, 24, 38.
21. T. Takekoshi and I.E. Kochanowski, 1974, U.S. Pat. 3,833,546 to General Electric.
22. T. Takekoshi and I.E. Kochanowski, 1975, U.S. Pat. 3,905,942 to General Electric.
23. T.T. Serafini, P. Delvigs and G.R. Lightsey, 1972, NASA TN D-6611.
24. T.T. Serafini, P. Delvigs and G.R. Lightsey, J. Appl. Polym. Sci., 1972, 16, 905.
25. T.T. Serafini, P. Delvigs and W.B. Elston, 1982, PMR Polyimides Review and Update, Washington, DC: NASA TM82821.
26. e.K. Sauers, J. Org. Chem., 1969, 34, 2275.
27. J. Abblard and M. Boudouin, 1978, Ger. Offen. 2,751,901.
28. M. Boudouin and J. Abblard, 1979, Ger. Offen. 2,834,919.
29. M. Bergain. A. Com bet and P. Grosjean., 1970, Brit. Pat. Spec .. 1,190,718.
30. D.O. Hummel, K.U. Heinen, H.D. Stenzenberger, and H. Siesler, J. Appl. Polym. Sci., 1974, 18, 2015.
31. J.M. Barton and G.J. Knight, 1975, RAE Technical Report 75082.
32. P.M. Hergenrother, ACP. Polym. Prep., 1980, 21, 81.
33. National Starch and Chemicals Corporation, Bridgewater, 1970, NJ 08807: Thermid IP-600, IP-6 I 5, IP-630 and IP-600 I.H.R. Lubowitz, U.S. Pat. 3,528,950.
34. H.R. Lubowitz, 1970, U.S. Pat. 3,528,950.
35. T.T. Serafini, P. Delvigs and G.R. Lightsey, J. Appl. Polym. Sci., 1972, 16, 905.
36. S. Nishizaki and A. Fukami, Kogyo Kagaku Zasshi, 1965, 68, 383.
37. M. Russo and L. Mortillaro, J. Polym. Sci., 1969, 7, 3337.
38. L. Tan, E.J. Soloski and F.E. Arnold, Am. Chem. Soc., Polym. Prepr., 1986, 27, 240.
39. Neth., 1965, Pat. Appl. 6,413,550.
40. Neth., 1965, Pat. Appl. 6,413,551.
41. P. Delvigs, L-C. Hsu and T.T. Serafini, Polymer Letters, 1970, 8, 29.
42. L. Tan and F.E. Arnold, Am. Chem. Soc. Polym. Prepr., 1988, 29, 316.
43. J.S. Wallace, F.E. Arnold and L.S. Tan, Am. Chem. Soc., Polym. Prepr., 1987, 28, 316.
44. V.L. Bell, B.L. Stump and H. Gager, J. Polym. Sci. Chem. Ed., 1976, 14, 2275.
45. H.H. Gibbs and C.V. Breder, ACS Polymer Preprints, 1974, 15, 775.
46. O.Y. Fedotova, V.1. Gorokhov, 0.1. Paresishuili, G.S. Karetnikor and Kolesnikov, Vysok. Socdin. AI4, 1972, 6, 1256.
47. G.L. Brode, G.T. Kwiatkowski and J.H. Hawakami, ACS Polymer Preprints, 1974, 15, 761.
48. A.K.St. Clair and T.L.St. Clair, in Polymers for High Technology, eds. MJ. Bowden and S.R.Turner, Amer. Chem. Soc. Symposium Series, 1987, 437.
49. M.K. Gerber, J.R. Pratt and T.L.St. Clair, Proceedings of the Third International Conference on Polyimides, 1988, 10.
50. Sanchez, C., Soler-Illia, G.J.A.A., Ribot, F., Lalot, T., Mayer, C.R., Cabuil, V., Chem. Mater. 2001, 13, 3061–3083.
51. Saba, N.; Tahir, P.M.; Jawaid, M., Polymers, 2014, 6, 2247–2273.
52. Sanchez, C.; Julian, B.; Bellevlle, P.; Popall, M., J. Mater. Chem., 2015, 15, 3559–3592.
53. Sanchez, C.; Lebeau, B.; Chaput, F.; Boilot, J.-P., Adv. Funct. Mater., 2003, 15, 1969–1994.
54. Shang, Z.; Lu, C.; Gao, L., Polym. Int., 2006, 55, 1277–1282.
55. Tsai, M.-H.; Huang, S.-L.; Lin, J.C.M.; Ko, C.-J.; Chen, Y.-L.; Lu, C.-M.; Chen, C.-J., J. Appl. Polym. Sci., 2007, 105, 3689–3697.
56. Chen, C.-J.; Tsai, C.-L.; Liou, G.-S., J. Mater. Chem. C, 2014, 2, 2842–2850.
57. Liou, G.-S.; Lin, P.-H.; Yen, H.-J.; Yu, Y.; Tsai, T.-W.; Chen, W.-C., J. Mater. Chem., 2010, 20, 531–536.
58. Laine, R.M., J. Mater. Chem., 2005, 15, 3725–3744.
59. Pereira, F.; Valle, K.; Bellevlle, P.; Morin, A.; Lambert, S.; Sanchez, C., Chem. Mater. 2008, 20, 1710–1718.
60. Zhou, Z.; Franz, A.W.; Hartmann, M.; Seifert, A.; Muller, T.J.J.; Thiel, W.R., Chem. Mater., 2008, 20, 4986–4992.
61. Kwan Ho Moon, Boknam Chae, Ki Seung Kim, Seung Woo Lee, Young Mee Jung, polymers, 2019, 13, 489.
62. Kwon, S.J.; Jang, A.-R.; Bae, J.; Kim, Y.S.; Lee, S.W., J. Nanoelectron. Optoelectron., 2013, 8, 588–593.
63. Kwon, S.J.; Hwang, C.H.; Jang, A.-R.; Bae, J.; Chae, B.; Won, J.C.; Lee, S.W., Mol. Cryst. Liq. Cryst., 2013, 584, 9–17.