| 研究生: |
劉益郎 Liu, Yi-Lang |
|---|---|
| 論文名稱: |
添加CuO與TiO2對鋅鐵氧磁體結構與電磁性質影響之研究 Effects of the addition of CuO and TiO2 on the structure and electromagnetic properties of Zn-ferrites |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 介電性質 、電磁性質 、陶瓷 、電子材料 |
| 外文關鍵詞: | Dielectric properties, Electromagnetic properties, Ceramics, Electric materials |
| 相關次數: | 點閱:91 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用積層技術整合磁性及非磁性鐵氧磁體,有助於開發L/C EMI
複合元件。由於製備過程中需考慮電感及電容材料之相容性,使得
製備之困難度提高。文獻中提及可利用一與NiCuZn鐵氧磁體相容之
非磁性材料夾在磁性材料與介電材料間,將可降低製作複合元件之
困難度。雖然前人已將製程上的相關問題解決,但尚未明確地解釋
其原因。本論文在此將探討添加CuO與TiO2,對鋅鐵氧磁體結構與電
磁性質之影響。
Integration of the magnetic ferrites and the non-magnetic ferrite uses the way of utilizing laminated technology that helps developing the L/C EMI composite parts. Owing to the consistency between inductance and capacitance the process of integration becomes more complicated. The literature indicated that non-magnetic materials placing in between the magnetic materials and capacitance could reduce the complication during process. Despite the problem-resolving related to process, the explicit explanation has not given from the past scholar yet. This research now studies the effects of the addition of CuO and TiO2 on the structure and electromagnetic properties of Zn-ferrites.
[1] Tsuzuki, Keiichi, "Multilayer coil.", PCT/JP2006/318266. (2007)
[2] Tsuzuki, Keiichi, "Multilayer coil.", PCT/JP2005/009975. (2007)
[3] S.H. Hong , J.H. Park, et al. "Magnetic properties and sintering characteristics of Ni-Zn(Ag, Cu) ferrite for LTCC applications.", J. Magn. Magn. Mater., 290-191 pp 1559-1562 (2005)
[4] A. Nakano , S. Saito, et al. "Composite Multilayer Parts." US Patent:5,476,728 (1995)
[5] M.D. Kingery, D.R. Uhlmann, et al. "Introduction to ceramics.", 2nd Edition, John Wiley & Sons, New York (1976)
[6] A. Pitnis, "Introduction to mineral sciences.", Cambridge University Press, New York (1992)
[7] S.M. Antao, I. Hassan, et al. "Cation ordering in magnesioferrite, MgFe2O4, to 982 °C using in situ synchrotron X-ray powder diffraction.", American Mineralogist, 90 pp 219-228 (2005)
[8] J.A. Gomes, M.H. Sousa, et al. "Rietveld structure refinement of the cation distribution in ferrite fine particles studied by X-ray powder diffraction.", J. Magn. Magn. Mater., 289 pp 184-187 (2005)
[9] A. Pavese, D. Levy, et al. "Cation distribution in synthetic zinc ferrite (Zn0.97Fe2.02O4) from in situ high-temperature.", American Mineralogist, 85 pp 1497-1502 (2000).
[10] W. Schiessel, W. Potzel, et al. "Magnetic properties of ZnFe2O4.", Phys. Rev. B, 53 pp 9143 - 9152 (1996)
[11] J.G. Sole, L.E. Bausa, et al. "An introduction to the Optical Spectroscopy of Inorganic Solids.", John Wiley & Sons, Chichester (2005)
[12] A.R. West "Basic Solid State Chemistry.", 2nd Edition, John Wiley & Sons, Chichester (1999)
[13] 岡本祥一(黃忠良譯著),磁性陶瓷,復漢出版社,台南市 (1985)
[14] E.J.W. Verwey and E.L. Heilmann, "Physical Properties and Cation Arrangement of Oxides with Spinel Structures.", J. Chem. Phys., 15 (4) pp 174-187 (1946)
[15] Kwan-Chi Kao, "Dielectric phenomena in solids: with emphasis on physical concepts of electronic processes.", Elsevier Academic Press, Amsterdam (2004)
[16] N. Ponpandian and A. Narayanasamy, "Influence of grain size and structural changes on the electrical properties of nanocrystalline zinc ferrite. ", J. Appl. Phys., 92 (5) pp 2770-2778 (2002)
[17] E.J.W. Verwey and J.H De Boer, "Molecular energy of alkali halides.", Rec. Trav. Chem. Pay-Bas , 55 p531 (1936) (cited from B. P. Rao, 2005, see reference [34])
[18] 梅立人,添加LiF對CaCu3Ti4O12的介電、導電和顯微結構影響,國立成功大學資源工程研究所碩士論文 (2006)
[19] C.G. Koops, "On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductor at Audiofrequencies.", Phys. Rev., 83 (1) pp 121-124 (1951)
[20] 邱碧秀,電子陶瓷材料,徐氏基金會,台北市,pp129-153 (1988)
[21] D.C. Sinclair and A.R. West, "Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature of resistance.", J. Appl. Phys., 66 (8) pp 3850-3856 (1989)
[22] R. M. Bozorth, "Ferromagnetism.", D. Van Nostrand Company, Princeton, New York (1951) (cited from reference [8])
[23] D.C. Khan, M. Misra, et al. "Structure and magnetization studies of Ti-substituted Ni0.3Zn0.7Fe2O4.", J. Appl. Phys., 53(3) pp 2722-2724 (1982)
[24] F.A. Radwan, M.A. Ahmed, et al. "Screening effect of Ti4+ ions on the electrical conductivity and thermoelectric power of Mg ferrite.", J. Phys. Chem. of Sol., 64 pp 2465–2477 (2003)
[25] B.L. Patil, S.R. Sawant, et al. "Temperature dependence of electrical resistivity and thermoelectric power in ferrites.", Phys. Stat. (a), 133 pp 147-152 (1992)
[26] A. Tawfik, "Jump rate and linear distance of vacancy on the structure and electrical conductivity of Ni0.65Zn0.35CuxFe2-xO4.", J. Magn. Magn. Mater., 224 pp 197-200 (2001)
[27] T.G.W. Stijntjes, J. Klerk, et al. "Permeability and conductivity of Ti-substituted Mn-Zn ferrites.", Phi. Res. Rep., 25 pp 95-107 (1970)
[28] L.G. Van Uitert, "DC resistivity in the nickel and nickel zinc ferrites system.", J. Chem. Phys., 23 (10) pp 1883-1887 (1955)
[29] Xiao-Xia Tang, A. Manthiran, et al. "Copper Ferrite Revisited.", J Solid State Chem., 79 pp 250-262 (1989)
[30] T.T. Ahmed, I.Z. Rahman, et al. "Study on the properties of the copper substituted Ni-Zn ferrites.", J. Materials Processing Technology, 153-154 pp 797-803 (2004)
[31] M. Fujimoto, "Inner Stress Induced by Cu Metal Precipitation at Grain Boundaries in Low-Temperature-Fired Ni-Zn-Cu Ferrite.", J. Am. Ceram. Soc., 77 pp2873-2877 (1994)
[32] H. Su, H. Zhang, et al. "High-permeability and high-Curie temperature Ni-Cu-Zn ferrite.", J. Magn. Magn. Mater., 283 pp 157-163 (2004)
[33] J. Mürbe and J. Töfer, "Ni-Cu-Zn ferrites for low temperature firing: I. ferrite composition and its effect on sintering behavior and permeability.", J. Electroceramics, 15 pp 215-221 (2005)
[34] B.P. Rao, K.H. Rao, et al. "DC resistivity and dielectric studies on Ti4+ substituted Ni-Zn Ferrites.", J. Opt. Adv. Mater., 7 (4) pp 710-704 (2005)
[35] A. Bonincontro, C. Cametti, et al. "Effect of volume ion polarisations on Maxwell -Wagner dielectric dispersions.", J. Phys. D: Appl. Phys., 13 pp 1529-1535 (1980)
[36] A. Tawfik, O. M. Hemeda, "Effect of vacancy jump rate on the permeability and dielectric properties of Ni0.65Zn0.35CuxFe2-xO4.", Mater. Lett., 56 pp 665-670 (2002)
[37] Z. Yue, Ji Zhou, et al. "Magnetic and electrical properties of low-temperature sintered Mn-doped NiCuZn ferrites.", J. Magn. Magn., 264 pp 258-263 (2003)
[38] C. Prakarsh and J.S. Baijal, "Dielectric behaviour of trivalent titanium- substituted Ni-Zn ferrites.", J. Less-Common Met., 107 pp 51-57 (1985)
[39] S.S. Suryavanshi, R.S. Partil, et al., "D.C. Conductivity and dielectric behavior of Ti4+ substituted Mg-Zn ferrites.", J. Less-Common Met., 168 pp 169-174 (1991)
[40] C. Prakash and J.S. Baijal, " Mössbaur studies on hyperfine field measurement in titanium doped nickel-zinc ferrites.", Solid State Communications, Vol. 50, No. 6, pp 557-559 (1984)
[41] A. Pradeep, C. Thangasamy, et al. "Synthesis and structural studies on Ni0.5+xZn0.5CuxFe2-2xO4.", J. Mater. Sci.:Materials in electrics, 15 pp 797-802 (2004)
[42] D.N. Bhosale, S.R. Sawant, et al., "Bulk magnetic studies on Cu-Mg-Zn ferrites.", J. Mater. Sci.:Materials in electrics, 9 pp 331-336 (1998)