| 研究生: |
陳谷宇 Chen, Ku-Yu |
|---|---|
| 論文名稱: |
石墨烯在β相氮化矽基板元件之電性研究 Electrical Properties of Graphene on β phase silicon nitride |
| 指導教授: |
陳則銘
Chen, Tse-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 石墨烯 、氮化矽 、量子霍爾現象 |
| 外文關鍵詞: | graphene, silicon nitride, quantum Hall effect |
| 相關次數: | 點閱:88 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
石墨烯因為其獨特的電性、熱學和力學性質,是一個在科學和科技上的新興焦點。然而石墨烯家族通常置放在二氧化矽基板,發生在基板和石墨烯介面交接處的雜質會散射電子,嚴重影響我們去研究石墨烯的物理理論。雖然使用懸浮石墨烯技術和氮化硼基板可以改善這些問題,但是這些方法不適合大量生產,這也導致他們的應用性受到嚴重限制。基本上,單晶β相的氮化矽基板跟石墨烯晶格的高相容性類似於氮化硼提供的效果,且它展現於高於氮化硼的介電常數。在氮化矽上的石墨烯電性裝置或許是一種適合晶圓尺度的二維材料積體電路上之新結構。
在本篇論文裡,我們證明在沒有使用退火技術下,石墨烯的載子遷移率高於5000 cm^2⁄(v.s)。而整個量測結果上,我們記錄了石墨烯裝置的磁傳輸特性。
Abstract
Graphene is a rising star in both science and technology due to its unique electronic, thermal, and mechanical properties. However, graphene family is generally supported on silicon dioxide substrates; strong impurity scatterings at the interface obscure the study of the fundamental physics in graphene systems. Although suspending graphene and boron nitride [BN] as the substrate lead to a substantial improvement, these methods are unsuitable for massive production and thus their implications are severely limited. In principle, epitaxial monocrystalline β-silicon nitride [β-Si3N4] substrates match graphene lattice, which reduce interfacial strain like graphene/BN devices, and exhibit higher-κ dielectric constant than that on BN substrates. Graphene family on epitaxial β-Si3N4/Si substrates may be a promising structure in 2D-material integrated circuits on wafer scale.
Here, we demonstrate the carrier mobility of single-layer graphene/β-Si3N4 devices is higher than 5000 cm^2⁄(v.s) before using the annealing process. In our experimental result, we report on the characterization of magnetotransport measurements in the graphene’s devices.
Bibliography
[1] Novoselov, K. S. et al. Electric field effect in atomically thin carbon films.
Science 306, 666–669 (2004).
[2] Geim, A. K. et al. The rise of graphene. Nature Mater. 6,183–191 (2007).
[3] Das Sarma, S. et al. Electronic transport in two dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).
[4] Katsnelson, M. I. et al. Chiral tunnelling and the Klein paradox in graphene. Nature Phys 2, 620–625 (2006).
[5] Katsnelson, M. I. Zitterbewegung, chirality, and minimal conductivity in graphene. Eur. Phys. J. B 51, 157–160 (2006).
[6] Schakel, A. M. J. Relativistic quantum Hall effect. Phys. Rev. D 43, 1428–1431 (1991).
[7] Zhang, Y. et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
[8] Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nature Phys. 2, 177–180 (2006).
[9] Han, W., et al. Graphene spintronics. Nature Nanotech. 9, 794–807 (2014).
[10] Trauzettel, B. et al. Spin qubits in graphene quantum dots. Nature Phys. 3, 192–196 (2007).
[11] Bolotin, K. I. et al. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009).
[12] Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).
[13] Du, X. et al. Approaching ballistic transport in suspended graphene. Nature Nanotech. 3, 491–495 (2008).
[14] Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).
[15] Ponomarenko, L. A. et al. Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008).
[16] Lin, Y-M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).
[17] Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).
[18] Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).
[19] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203–207 (2009).
[20] P. Sutter, Epitaxial graphene: How silicon leaves the scene. Nat. Mater. 8, 171 (2009).
[21] Zhu, W. et al. Silicon nitride gate dielectrics and band gap engineering in graphene layers Nano Lett.2010, 10, 3572– 3576 (2010).
[22] Ming Yang, et al. Graphene on β-Si3N4: An ideal system for graphene-based electronic. Appl. Phys. 2007, 102, 013507−013512 (2011).
[23] Castro Neto, A. H. et al. The electronic properties of graphene. Rev. Mod. Phys.
81, 109–162 (2009).
[24] http://technophilicmag.com/author/tejas-deshpande/.
[25] http://www.sp.phy.cam.ac.uk/research/fundamentals-of-low-dimensional-semiconductor-systems/lowD.
[26] Ezawa, Zyun F. Quantum Hall Effects: Recent Theoretical and Experimental Developments (3rd ed.). World Scientific. ISBN 978-981-4360-75-3. (2013).
[27] Hung-Chun Lee, Crystalline Matched Template for Silicon Nitride Growth on Silicon Substrate, National Cheng Kung University. (2014).
[28] Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)
[29] Chin-Hung Chen, Study of Spin-orbit Interaction with Magnetic Focusing, Master’s thesis, National Cheng Kung University. (2014).
[30] Pallecchi, E. et al. High electron mobility in epitaxial graphene on 4H-SiC (0001) via post-growth annealing under hydrogen. Sci. Rep. 4, 4558 (2014).