簡易檢索 / 詳目顯示

研究生: 葉俊良
Ye, Jun-Liang
論文名稱: 在光生化反應器中以二階段策略培養微藻 生產油脂之研究
Studies on Lipid Production from Microalgae Using Two-step Cultivation Strategy in a Photobioreactor
指導教授: 吳文騰
Wu, Wen-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 80
中文關鍵詞: 生化柴油光生化反應器二階段培養策略擬球藻微藻
外文關鍵詞: Biodiesel, Nannochloropsis oculata, Photobioreactor, Two-step cultivation strategy, Microalgae
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 擬球藻是油質性微藻的一種,其可透過光合作用將二氧化碳固定,轉換成化合物儲存於體內並以油脂形式大量儲存。我們可利用擬球藻富含油脂的特性,萃取出其體內的油脂,作為生化柴油來源之一。為了能從藻類獲得大量油脂,設計適當的培養策略乃是重要之課題。
    本研究提出一個新穎的二階段微藻培養策略:第一階段培養於氮源充足的循環式光生化反應器;第二階段培養於氮源限制的板式光生化反應器。循環式光生化反應器係由直立式平板及下方儲存槽所組成,光照立體化為其特點,如此可改善一般傳統開放式平面培養池照光面積不足、攪拌不完全之缺點,透過此階段可獲得大量之微藻總產量。板式光生化反應器之特色為具有較高之單位培養體積照光量,藻類可在氮源限制下累積油脂含量,透過此階段可獲得高油脂含量之微藻。
    在本實驗中,分別探討第一階段和第二階段之最適化操作條件,並將二階段培養策略與傳統之單一階段批次培養方式 (培養於板式光反應器或循環式光反應器) 做比較。實驗結果顯示藉由二階段培養方式,最終油脂產率約為單一階段批次培養於板式光反應器的 2 倍、循環式光反應器的 6 倍,證明藉由二階段培養策略確實可有效提升油脂產率。

    Nannochloropsis oculata is an oleaginous microalga. It can fix the carbon dioxide, transforming it into cellular lipid through photosynthesis. With its characteristic of abundance in lipid, it can be an excellent source of biodiesel since the intracellular lipid can be easily extracted and converted to biodiesel. In order to get large lipid production from microalgae, the design of optimum cultivation strategy is very important.
    In this study, we propose a novel two-step cultivation strategy of microalgae: In the first step, the cultivation was carried out in a circulation type photobioreactor with sufficient nitrogen source. In the second step, the cultivation was carried out in a flat-plat photobioreactor with limiting nitrogen source. Circulation type photobioreactor was composed of a rectangular flat plate and a medium reservoir at the bottom. It was characterized by enhanced illumination area. It could improve the shortcomings of low illumination area, incomplete mixing in the traditional open pond. We obtained a large amount of microalgae through this step. Flat-plate photobioreactor was characterized by high irradiance per working volume. Microalgae could accumulate lipid in the nitrogen limiting environment. We obtained high lipid content of microalgae through this step.
    In the study, we separately investigated the optimum culture conditions for the first step and second step cultivation. We also compared our two-step cultivation strategy with the traditional single step cultivation methods, i.e. batch culture in the flat-plate photobioreactor or in the circulation type photobioreactor. In the two-step strategy, the final lipid yield was about two-folds of that in the flat-plate photobioreactor or six-folds of that in the circulation type photobioreactor. The results proved that the two-step cultivation strategy could enhance the lipid yield effectively.

    目錄 Ⅰ 圖目錄 Ⅲ 表目錄 Ⅴ 符號 Ⅵ 第一章 緒論 1 1-1 前言 1 1-2 研究目的 3 第二章 文獻回顧 4 2-1 藻類簡介 4 2-1-1 影響藻類生長之環境因子 6 2-1-2 光合作用 11 2-1-3 油脂之合成 15 2-2 藻類於生化柴油之應用 17 2-3 藻類培養介紹 19 第三章 實驗材料及方法 25 3-1 藻種 25 3-2 培養基組成 26 3-3 光生化反應器 28 3-4 實驗培養條件 30 3-4-1 藻種保存 30 3-4-2 前培養 30 3-4-3 二階段培養策略 31 3-5 實驗設備 32 3-6 實驗分析方法 33 3-6-1 光照強度測定 33 3-6-2 藻細胞濃度分析 33 3-6-3 油脂含量分析 33 第四章 實驗結果與討論 37 4-1 藻類生長之濃度分析方法 37 4-2 循環式光生化反應器與平面培養池之比較 38 4-3 第一階段─循環式光生化反應器之培養條件探討 40 4-3-1 液體循環流速之影響 41 4-3-2 光照強度之影響 43 4-3-3 二氧化碳之影響 45 4-3-4 鹽度之影響─對生長環境之耐受性探討 47 4-3-5 光照周期之影響 49 4-3-6 單位培養體積光照量之影響 51 4-4 第二階段─板式光生化反應器之培養條件探討 54 4-4-1 光照周期之影響 55 4-4-2 二氧化碳之影響 57 4-4-3 藻類起始濃度之影響─可濃縮之程度 59 4-4-4 光照強度之影響 63 4-4-5 鹽度之影響 65 4-5 二階段培養策略和單一階段批次培養方式之比較 67 4-6 藻類油脂產量與細胞生長之關係模式建立 72 第五章 結論與未來展望 73 5-1 結論 73 5-2 未來展望 74 參考文獻 75 圖目錄 圖 2-1 光合作用之光反應與暗反應示意圖 11 圖 2-2 光反應之反應式 12 圖 2-3 暗反應之反應式 12 圖 2-4 光合作用與光照強度之關係圖 13 圖 2-5 擬球藻之生長曲線與油脂累積時間趨勢圖 15 圖 2-6 油脂合成之路徑圖 16 圖 2-7 利用油脂生產生化柴油之酯化反應式 17 圖 2-8 藻類開放式系統培養示意圖 22 圖 3-1 二階段培養策略示意圖 29 圖 3-2 藻種保存以及前培養於血清瓶之示意圖 30 圖 3-3 脂肪酸甲酯分析流程圖 35 圖 4-1 藻類乾重對應 OD 值之檢量線 37 圖 4-2 擬球藻培養於循環式光反應器與平面培養池之生長曲線 39 圖 4-3 擬球藻培養於不同循環流速之生長曲線 42 圖 4-4 擬球藻培養於不同光照強度之生長曲線 44 圖 4-5 擬球藻培養於不同二氧化碳含量之生長曲線 46 圖 4-6 擬球藻培養於不同培養基鹽度之生長曲線 48 圖 4-7 擬球藻培養於不同光照週期之生長曲線 50 圖 4-8 擬球藻培養於不同單位培養體積光照量之微藻與油脂總產量53 圖 4-9 擬球藻培養於不同光照週期之生長曲線 56 圖 4-10 擬球藻培養於不同光照週期之油脂含量時間趨勢圖 56 圖 4-11 擬球藻培養於不同二氧化碳含量之生長曲線 58 圖 4-12 擬球藻培養於不同藻類起始濃度之生長曲線 60 圖 4-13 擬球藻培養於不同藻類起始濃度之油脂含量 61 圖 4-14 擬球藻培養於不同藻類起始濃度之油脂產率 61 圖 4-15 擬球藻培養於不同藻類起始濃度之油脂含量時間趨勢圖 62 圖 4-16 擬球藻培養於不同藻類起始濃度之油脂產率時間趨勢圖 62 圖 4-17 擬球藻培養於不同光照強度之生長曲線 64 圖 4-18 擬球藻培養於不同光照強度之油脂含量時間趨勢圖 64 圖 4-19 擬球藻培養於不同光照強度之油脂產率時間趨勢圖 64 圖 4-20 擬球藻培養於不同培養基鹽度之生長曲線 65 圖 4-21 擬球藻培養於不同培養基鹽度之油脂含量時間趨勢圖 66 圖 4-22 擬球藻培養於不同培養基鹽度之油脂產率時間趨勢圖 66 圖 4-23 二階段策略於最適化條件下,第一和第二階段之生長 70 曲線與油脂含量時間趨勢圖 圖 4-24 擬球藻培養於循環式、板式光反應器、二階段培養策略 71 之油脂總產量時間趨勢圖 圖 4-25 擬球藻培養於循環式、板式光反應器、二階段培養策略 71 之油脂產率時間趨勢圖 表目錄 表 2-1 藻類產品的商業應用 5 表 2-2 藻類培養系統之分類 23 表 2-3 藻類培養之開放式系統與密閉式系統之比較 24 表 3-1 Nutrient solution composition 27 表 3-2 Trace metal solution composition 27 表 3-3 Vitamin solution composition 27 表 3-4 實驗儀器設備表 32 表 4-1 擬球藻培養於循環式光反應器與平面培養池之乾重、油脂含量、產率 39 表 4-2 擬球藻培養於不同循環流速下之乾重、油脂含量、產率 42 表 4-3 擬球藻培養於不同光照強度下之乾重、油脂含量、產率 44 表 4-4 擬球藻培養於不同二氧化碳含量下之乾重、油脂含量、產率 46 表 4-5 擬球藻培養於不同培養基鹽度下之乾重、油脂含量、產率 48 表 4-6 擬球藻培養於不同光照週期下之乾重、油脂含量、產率 50 表 4-7 擬球藻培養於不同光照比例之擬球藻總產量和油脂總產量 53 表 4-8 擬球藻培養於不同二氧化碳含量下之乾重、油脂含量、產率 58 表 4-9 擬球藻培養於不同藻類起始濃度之比生長速率 60 表 4-10 循環式、板式光反應器、二階段培養策略之最適化操作條件 69 表 4-11 循環式、板式光反應器、二階段培養策略於最適化條件下之 70 油脂總產量比較 表 4-12 擬球藻之脂肪酸組成 70 表 4-13 第一和第二階段之油脂產量與細胞生長關係模式之參數 72

    Apt, KE; Behrens, PW. Commercial developments in microalgal biotechnology. J. Phycol. 35(2): 215-226. 1999

    Baum, R. Microalgae are possible source of biodiesel fuel. Chem. Eng. News 72(14): 28-29. 1994

    Becker, EW. Microalgae: biotechnology and microbiology. Cambridge University Press. UK. p.1. 1994

    Ben-Amotz, A; Tornabene, TG; Thomas, WH. Chemical profile of selected species of microalgae with emphasis on lipids. J. Phycol. 21(1): 72-81. 1985

    Carvalho, AP; Malcata, FX. Optimization of omega-3 fatty acid production by microalgae: Crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Mar. Biotechnol. 7(4): 381-388. 2005

    Chen, F. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 14(11): 421-426. 1996

    Chohji, T; Tabata, M; Hirai, E. CO2 recovery from flue gas by an ecotechnological(environmentally friendly) system. Energy 22(2-3): 151-159. 1997

    Cifuentes, AS; Gonzalez, MA; Inostroza, I; Aguilera, A. Reappraisal of physiological attributes of nine strains of Dunaliella (Chlorophyceae): Growth and pigment content across a salinity gradient. J. Phycol. 37(2): 334-344. 2001

    de-Bashan, LE; Hernandez, JP; Morey, T; Bashan, Y. Microalgae growth-promoting bacteria as "helpers" for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res. 38(2): 466-474. 2004

    Delaunay, F; Marty, Y; Moal, J; Samain, JF. The effect of monospecific algal diets on growth and fatty-acid composition of pecten maximus(L) larvae. J. Exp. Mar. Biol. Ecol. 173(2): 163-179. 1993

    Endo, T; Schreiber, U; Asada, K. Suppression of quantum yield of photosystem- II by hyperosmotic stress in Chlamydomonas-reinhardtii. Plant Cell Physiol. 36(7): 1253-1258. 1995

    Fernandez, FGA; Sevilla, JMF; Perez, JAS; Grima, EM; Chisti, Y. Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem. Eng. Sci. 56(8): 2721-2732. 2001

    Fidalgo, JP; Cid, A; Torres, E; Sukenik, A; Herrero, C. Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166(1-2): 105-116. 1998

    Garbisu, C; Gil, JM; Bazin, MJ; Hall, DO; Serra, JL. Removal of nitrate from water by foam-immobilized phormidium laminosum in batch and continuous-flow bioreactors. J. Appl. Phycol. 3(3): 221-234. 1991

    Gordillo, FJL; Goutx, M; Figueroa, FL; Niell, FX. Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. J. Appl. Phycol. 10(2): 135-144. 1998

    Grima, EM; Belarbi, EH; Fernandez, FGA; Medina, AR; Chisti, Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20(7-8): 491-515. 2003

    Grima, EM; Perez, JAS; Camacho, FG; Sevilla, JMF; Fernandez, FGA. Effect of growth rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbana in chemostat culture. Appl. Microbiol. Biotechnol. 41(1): 23-27. 1994

    Grobbelaar, JU; Nedbal, L; Tichy, V. Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J. Appl. Phycol. 8(4-5): 335-343. 1996

    Hoshida, H; Ohira, T; Minematsu, A; Akada, R; Nishizawa, Y. Accumulation of eicosapentaenoic acid in Nannochloropsis sp. in response to elevated CO2 concentrations. J. Appl. Phycol. 17(1): 29-34. 2005

    Hu, Q. Environmental effects on cell composition. In: Richmond A, editor. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science. UK. p85-88. 2004

    Hu, Q; Guterman, H; Richmond, A. A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol. Bioeng. 51(1): 51-60. 1996a

    Hu, Q; Kurano, N; Kawachi, M; Iwasaki, I; Miyachi, S. Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl. Microbiol. Biotechnol. 49(6): 655-662. 1998

    Hu, Q; Richmond, A. Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor . J. Appl. Phycol. 8(2): 139-145. 1996b

    Jeong, ML; Gillis, JM; Hwang, JY. Carbon dioxide mitigation by microalgal photosynthesis. Bull. Korean Chem. Soc. 24(12): 1763-1766. 2003

    Laliberte, G; Delanoue, J. Autotrophic, heterotrophic, and mixotrophic growth of chlamydomonas-humicola(chlorophyceae) on acetate. J. Phycol. 29(5): 612-620. 1993

    Lotero, E; Liu, YJ; Lopez, DE; Suwannakarn, K; Bruce, DA; Goodwin, JG. Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res. 44(14): 5353-5363. 2005

    Martin-Jezequel, V; Hildebrand, M; Brzezinski, MA. Silicon metabolism in diatoms: Implications for growth. J. Phycol. 36(5): 821-840. 2000

    Masojidek, J; Koblizek, M; Torzillo, G. Photosynthesis in microalgae. In: Richmond A, editor. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science. UK. p20-33. 2004

    Miao, XL; Wu, QY; Yang, CY. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrolysis. 71(2): 855-863. 2004

    Morita, M; Watanabe, Y; Saiki, H. Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol. Bioeng. 69(6): 693-698. 2000

    Pulz, O. Photobioreactors: production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol. 57(3): 287-293. 2001

    Ratledge, C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie 86(11): 807-815. 2004

    Renaud, SM; Parry, DL. Microalgae for use in tropical aquaculture .2. Effect of salinity on growth , gross chemical-composition and fatty-acid composition of 3 species of marine microalgae. J. Appl. Phycol. 6(3): 347-356. 1994

    Renaud, SM; Thinh, LV; Lambrinidis, G; Parry, DL. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211(1-4):195-214. 2002

    Renaud, SM; Zhou, HC; Parry, DL; Thinh, LV; Woo, KC. Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp, Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp.(clone T ISO) J. Appl. Phycol. 7(6): 595-602. 1995

    Richmond, A. Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512(1-3): 33-37. 2004

    Richmond, AE. Microalgaculture. Crit. Rev. Biotechnol. 4(4): 369-438. 1986

    Rocha, JMS; Garcia, JEC; Henriques, MHF. Growth aspects of the marine microalga Nannochloropsis gaditana. Biomol. Eng. 20(4-6): 237-242. 2003

    Roman, K. From the fryer to the fuel tank: the complete guide to using vegetable oil as an alternative fuel. Joshua Tickell. Australia. p.47. 2000

    Rubio, FC; Fernandez, FGA; Perez, JAS; Camacho, FG; Grima, EM. Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol. Bioeng. 62(1): 71-86. 1999

    Rubio, FC; Miron, AS; Garcia, MCC; Camacho, FG; Grima, EM; Chisti, Y. Mixing in bubble columns: a new approach for characterizing dispersion coefficients. Chem. Eng. Sci. 59(20): 4369-4376. 2004

    Sato, T; Usui, S; Tsuchiya, Y; Kondo, Y. Invention of outdoor closed type photobioreactor for microalgae. Energy Conv. Manag. 47(6): 791-799. 2006

    Sobczuk, TM; Camacho, FG; Rubio, FC; Fernandez, FGA; Grima, EM. Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnol. Bioeng. 67(4): 465-475. 2000

    Suh, IS; Lee, CG.Photobioreactor engineering:Design and performance. Biotechnol Bioprocess Eng. 8(6): 313-321. 2003

    Sukenik, A; Zmora, O; Carmeli, Y. Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture 117(3-4): 313-326. 1993

    Tam, NFY; Wong, YS. Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ. Pollut. 107(1): 145-151. 2000

    Tan, CK; Johns, MR. Screening of diatoms for heterotrophic eicosapentaenoic acid production. J. Appl. Phycol. 8(1): 59-64. 1996

    Tanaka, K; Konishi, F; Himeno, K; Taniguchi, K; Nomoto, K. Augmentation of antitumor resistance by a strain of unicellular green algae, Chlorella- vulgaris. Cancer Immunol. Immunother. 17(2): 90-94. 1984

    Terry, KL; Raymond, LP. System design for the autotrophic production of microalgae. Enzyme Microb. Technol. 7(10): 474-487. 1985

    Torzillo, G; Giovannetti, L; Bocci, F; Materassi, R. Effect of oxygen concentration on the protein content of Spirulina biomass. Biotechnol Bioeng 26(9): 1134-1135. 1984

    Turpin, DH. Effect of inorganic N availability on algal photosynthesis and carbon metabolism. J. Phycol. 27(1): 14-20. 1991

    Vonshak, A; Torzillo, G; Accolla, P; Tomaselli, L. Light and oxygen stress in Spirulina platensis (cyanobacteria) grown outdoors in tubular reactors. Physiol Plant 97(1):175-179. 1996

    Wen, ZY; Chen, F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol. Adv. 21(4): 273-294. 2003

    Wu, J; Neimanis, S; Heber, U. Photorespiration is more effective than the mehler reaction in protecting the photosynthetic apparatus against photoinhibition. Bot. Acta 104(4): 283-291. 1991

    You, T; Barnett, SM. Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem. Eng. J. 19(3): 251-258. 2004

    Zhu, CJ; Lee, YK; Chao, TM. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. J. Appl. Phycol. 9(5): 451-457. 1997

    Zittelli, GC; Pastorelli, R; Tredici, MR. A Modular Flat Panel Photobioreactor (MFPP) for indoor mass cultivation of Nannochloropsis sp. under artificial illumination. J. Appl. Phycol. 12(3-5): 521-526. 2000

    下載圖示 校內:立即公開
    校外:2006-07-25公開
    QR CODE